Volume 42 Issue 3
Jun.  2024
Turn off MathJax
Article Contents
DENG Yongliang, GAO Yutong, ZHOU Qi, LI Kewei, GU Tiantian. An Operational Resilience Evaluation of Subway Station Based on Improved CRITIC-VIKOR Method[J]. Journal of Transport Information and Safety, 2024, 42(3): 167-174. doi: 10.3963/j.jssn.1674-4861.2024.03.018
Citation: DENG Yongliang, GAO Yutong, ZHOU Qi, LI Kewei, GU Tiantian. An Operational Resilience Evaluation of Subway Station Based on Improved CRITIC-VIKOR Method[J]. Journal of Transport Information and Safety, 2024, 42(3): 167-174. doi: 10.3963/j.jssn.1674-4861.2024.03.018

An Operational Resilience Evaluation of Subway Station Based on Improved CRITIC-VIKOR Method

doi: 10.3963/j.jssn.1674-4861.2024.03.018
  • Received Date: 2023-12-26
    Available Online: 2024-10-21
  • The operational resilience of subway stations is characterized by its multidimensionality and complexity. To evaluate this resilience accurately and reliably, an improved A CRITIC-VIKOR based evaluation method is proposed. Based on resilience theory and the operational characteristics of subway stations, the concept of operational resilience for subway stations is defined, with a focus on its three core dimensions: pressure, state, and response. Key factors in four domains, including human, machine, environment, and management, are analyzed, leading to the development of 8 primary indexes. Through literature analysis, 26 secondary evaluation indexes are established. To assign more accurate weights to the indexes, the standard deviation coefficient method is applied, improving the CRITIC method through correlation coefficient analysis. By integrating the VIKOR method, a novel evaluation model for subway station operational resilience is proposed. An empirical analysis is conducted on Tongli station, Liuhong station, and Nanmen station of Suzhou subway Line 4. Data is collected using a Likert scale, and weights are calculated for the 26 evaluation indexes, as well as the group utility, individual regret, and decision-making index for each station. This allows for a quantitative ranking of the operational resilience of subway stations. Compared with superiority chart, analytic hierarchy process, and entropy method, the improved CRITIC method showed the smallest bias range, from 2% to 40%, with the cumulative bias of the 26 indexes being the smallest at 553%. The results indicate that the weights for pressure resilience, state resilience, and response resilience are 59.74%, 21.48%, and 18.78%, respectively. Among the three stations, Liuhong station demonstrates the highest operational resilience, followed by Tongli station and Nanmen station. The evaluation model provides theoretical foundation for more accurate evaluation of subway station operational resilience.

     

  • loading
  • [1]
    陈绍清, 熊思斯, 何朝远, 等. 地铁深基坑坍塌事故安全风险分析[J]. 安全与环境学报, 2020, 20(1): 52-58.

    CHEN S Q, XIONG S S, HE C Y, et al. Safety risk analysis for the deep foundation pit collapse accidents in the subway construction system[J]. Journal of Safety and Environment, 2020, 20(1): 52-58. (in Chinese)
    [2]
    王起全, 李登尧, 杨鑫刚. 地铁事故应急疏散模拟及优化研究[J]. 中国安全生产科学技术, 2019, 15(11): 170-178.

    WANG Q Q, LI D Y, YANG X G. Study on simulation and optimization of emergency evacuation in subway accident[J]. Journal of Safety Science and Technology, 2019, 15(11): 170-178. (in Chinese)
    [3]
    王朔, 朱士友, 俞军燕, 等. 地铁车站应急预案VR模拟与情景设计[J]. 中国安全科学学报, 2019, 29(7): 183-188.

    WANG S, ZHU S Z, YU J Y, et al. VR based simulation and scenario design of emergency response plans for metro stations[J]. China Safety Science Journal, 2019, 29(7): 183-188. (in Chinese)
    [4]
    任刚, 陈佳洁, 高瑾瑶, 等. 基于改进可拓物元法的地铁车站运营安全评价方法[J]. 城市轨道交通研究, 2020, 23(3): 136-139.

    REN G, CHEN J J, GAO J Y, et al. Safety assessment of metro station operation based on improved extension and matter element method[J]. Urban Mass Transit, 2020, 23(3): 136-139. (in Chinese)
    [5]
    肖霁川, 邢颖. 基于熵权TOPSIS模型的地铁车站运营脆弱性评价方法[J]. 交通运输工程与信息学报, 2020, 18(2): 163-169.

    XIAO J C, XING Y. Vulnerability evaluation method for metro station operation based on entropy weight TOPSIS model[J]. Journal of Transportation Engineering and Information, 2020, 18(2): 163-169. (in Chinese)
    [6]
    张渺. G1-EW组合赋权云模型下地铁运营安全风险评价[J]. 中国安全科学学报, 2022, 32(6): 163-170.

    ZHANG M. Risk assessment of metro operation based on G1-EW combination weighting cloud model[J]. China Safety Science Journal, 2022, 32(6): 163-170. (in Chinese)
    [7]
    段晓红, 周翰霖, 熊怡莲. 基于多重影响力的公共交通网络中地铁车站脆弱性评价[J]. 安全与环境学报, 2022, 22(6): 3003-3013.

    DUAN X H, ZHOU H L, XIONG Y L. Vulnerability evaluation of subway station in public transportation network based on multiple influences[J]. Journal of Safety and Environment, 2022, 22(6): 3003-3013. (in Chinese)
    [8]
    AVCI O, OZBULUT O. Threat and vulnerability risk assessment for existing subway stations: a simplified approach[J]. Case Studies on Transport Policy, 2018, 6(4): 663-673.
    [9]
    FORERO-ORTIZ E, MARTINEZ-GOMARIZ E, CAÑAS PORCUNA M, et al. Flood risk assessment in an underground railway system under the impact of climate change: a case study of the Barcelona Metro[J]. Sustainability, 2020, 12 (13): 5291.
    [10]
    ALAWAD H, AN M, KAEWUNRUEN S. Utilizing an adaptive neuro-fuzzy inference system(ANFIS)for overcrowding level risk assessment in railway stations[J]. Applied Sciences, 2020, 10(15): 5156.
    [11]
    焦柳丹, 李东荣, 张羽, 等. 暴雨灾害下城市轨道交通车站韧性关键影响因素研究[J]. 重庆交通大学学报(自然科学版), 2023, 42(5): 109-115.

    JIAO L D, LI D R, ZHANG Y, et al. Key influencing factors of urban rail transit station resilience under rainstorm disaster[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2023, 42(5): 109-115. (in Chinese)
    [12]
    黄亚江, 李书全, 李益锌, 等. 基于DEMATEL-ISM-ANP的地铁运营安全韧性综合评价[J]. 中国安全科学学报, 2022, 32(6): 171-177.

    HANG Y J, LI S Q, LI Y X, et al. Comprehensive evaluation on subway operation safety resilience based on DEMATEL-ISM-ANP[J]. China Safety Science Journal, 2022, 32 (6): 171-177. (in Chinese)
    [13]
    陈兆芳, 徐政, 姜跃, 等. 地铁应急管理韧性评价指标体系与评价方法研究[J]. 交通工程, 2024, 24(7): 79-85, 92.

    CEHN Z F, XU Z, JIANG Y, et al. Research on resilience evaluation index system and evaluation method for metro emergency management[J]. Journal of Transportation Engineering, 2024, 24(7): 79-85, 92. (in Chinese)
    [14]
    ITANI A, SHALABY A. Assessing the bus bridging effectiveness on the operational resilience of the subway service in Toronto[J]. Transportation Research Record, 2021, 2675 (9): 1410-1422.
    [15]
    吕彪, 高自强, 刘一骝. 道路交通系统韧性及路段重要度评估[J]. 交通运输系统工程与信息, 2020, 20(2): 114-121.

    LYU B, GAO Z Q, LIU Y L. Evaluation of road transportation system resilience and link importance[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20(2): 114-121. (in Chinese)
    [16]
    OUYANG M, DUEÑAS-OSORIO L, MIN X. A three-stage resilience analysis framework for urban infrastructure systems[J]. Structural Safety, 2012, 36: 23-31.
    [17]
    薛亮, 赵胜川. 基于PSR模型及博弈组合赋权的城市轨道交通运营水平评价研究[J]. 铁道运输与经济, 2021, 43(5): 123-129.

    XUE L, ZHAO S C. Urban transit operation evaluation based on PSR model and game combination weighting[J]. Railway Transport and Economy, 2021, 43(5): 123-129. (in Chinese)
    [18]
    马雪娇, 朱昌锋, 王学贵, 等. 不同编组运营模式下地铁运力与客流匹配度对比分析[J]. 铁道标准设计, 2023, 67(3): 22-29.

    MA X J, ZHU C F, WANG X G, et al. Comparative analysis of matching degree of subway capacity and passenger demand in different operation modes[J]. Railway Standard Design, 2023, 67(3): 22-29. (in Chinese)
    [19]
    张立军, 张潇. 基于改进CRITIC法的加权聚类方法[J]. 统计与决策, 2015, 22: 65-68.

    ZHANG L J, ZHANG X. A weighted clustering method based on improved CRITIC method[J]. Statistics & Decision, 2015, 22: 65-68. (in Chinese)
    [20]
    卫振林, 宋太春, 张翔. 基于改进VIKOR算法的现代有轨电车线网规划研究[J]. 交通运输系统工程与信息, 2017, 17 (3): 136-142.

    WEI Z L, SONG T C, ZHANG X. Modern tram line network planning based on the improved weighted VIKOR method[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 136-142. (in Chinese)
    [21]
    李振龙, 潘梦妞, 曲彦菘, 等. 基于IAHP-EWM-LDM的L3级自动驾驶接管过程安全性评价方法[J]. 交通信息与安全, 2023, 41(4): 14-23, 100.

    LI Z L, PAN M N, QU Y S, et al. A method for evaluating the safety over the takeover process of the level 3 automated vehicles based on IAHP-EWM-LDM[J]. Journal of Transport Information and Safety, 2023, 41(4): 14-23, 100. (in Chinese)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(4)

    Article Metrics

    Article views (102) PDF downloads(4) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return