Volume 41 Issue 4
Aug.  2023
Turn off MathJax
Article Contents
CHENG Jing, LU Qun, WU Tongzheng, WANG Yuanqing. A Method for Evaluating Recovery Strategies for Cascade Failures of Metro Networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018
Citation: CHENG Jing, LU Qun, WU Tongzheng, WANG Yuanqing. A Method for Evaluating Recovery Strategies for Cascade Failures of Metro Networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018

A Method for Evaluating Recovery Strategies for Cascade Failures of Metro Networks

doi: 10.3963/j.jssn.1674-4861.2023.04.018
  • Received Date: 2022-11-12
    Available Online: 2023-11-23
  • The effectiveness of recovery strategies plays a vital role in emergency response after cascading failures take place in a metro network, which is closely related to its operation safety. To address the cascading failures in metro networks, a method for evaluating the efficiency of recovery strategies is proposed from a system resilience perspective. A function for allocating recovery nodes is established based on the characteristics of the distribution of passenger flows at metro stations. And a model of network cascade failure with recovery strategy is developed by integrating the recovery strategy into the cascade failure process. Then, network efficiency and connectivity are used to characterize system functionality, and a system functionality curve is introduced to quantify system resilience. The effectiveness of three recovery strategies, including random recovery, importance priority recovery, and degree priority recovery, are evaluated through Python simulations which are carried out based on the metro network in the city of Xi'an. The results indicate that increasing the node recovery ratio enhances the efficacy of recovery strategies in a singular strategy effectiveness assessment. This enhancement manifests as a reduction in system damage during the resistance and recovery phases, accompanied by an accelerated recovery rate. By comparing different strategies, the strategy of importance priority recovery outperforms the degree priority recovery and the random recovery. Two resilience indicators of the importance priority recovery are 11.9% and 3.4% greater than degree priority recovery, respectively; and 7.6% and 1.2% greater than random recovery, respectively. Compared to traditional models, the proposed model exhibits better goodness of fit for the speed of propagation failure, change of system performance, and process of actual traffic cascading failure. It suggests that under the influence of cascading failures in metro networks, better recovery results can be achieved by adopting an importance priority recovery strategy and increasing node recovery proportion. The simulation results accurately represent the impact of depict disturbance on system performance, aiding decision-making for preventing and recovering from cascading failures in metro networks.

     

  • loading
  • [1]
    ZHANG D M, DU F, HUANG H, et al. Resiliency assessment of urban rail transit networks: Shanghai metro as an example[J]. Safety Science, 2018, 106: 230-243. doi: 10.1016/j.ssci.2018.03.023
    [2]
    WU G, LI M, LI Z S. Resilience-based optimal recovery strategy for cyber-physical power systems considering component multistate failures[J]. IEEE Transactions on Reliability, 2020, 99: 1-15.
    [3]
    MOTTR A E, LAI Y C. Cascade-based attacks on complex networks[J]. Phys. Rev. E, 2002, 66(8): 65-102.
    [4]
    谢丰, 程苏琦, 陈冬青, 等. 基于级联失效的复杂网络抗毁性[J]. 清华大学学报(自然科学版), 2011, 51(10): 1252-1257. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201110006.htm

    XIE F, CHENG S Q, CHEN D Q, et al. Cascade failure-based destructive resistance of complex networks[J]. Journal of Tsinghua University(Natural Science Edition), 2011, 51(10): 1252-1257. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB201110006.htm
    [5]
    HUANG W, ZHOU B, YU Y, et al. Vulnerability analysis of road network for dangerous goods transportation considering intentional attack: based on cellular automata[J]. Reliability Engineering and System Safety, 2021, 214(3): 107779.
    [6]
    王秋玲, 朱璋元, 陈红, 等. 基于CML的级联失效下异质多层交通网络节点抵抗特性研究[J]. 中国公路学报, 2022, 35 (1): 263-274. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201023.htm

    WANG Q L, ZHU Z Y, CHEN H, et al. CML-based node resistance characteristics of heterogeneous multilayer traffic networks under cascading failure[J]. Chinese Journal of Highways, 2022, 35(1): 263-274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202201023.htm
    [7]
    SUN, LISHAN, HIANG, et al. Vulnerability assessment of urban rail transit based on multi-static weighted method in Beijing, China[J]. Transportation Research Part A: Policy and Practice, 2018, 108: 12-24. doi: 10.1016/j.tra.2017.12.008
    [8]
    黄爱玲, 徐笑涵, 关伟, 等. 基于加权耦合映像格子的地铁网络稳定性演化研究[J]. 交通运输系统工程与信息, 2021, 21 (3): 140-149. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103017.htm

    HUANG A L, XU X H, GUAN W, et al. Study on the stability evolution of subway network based on weighted coupled image lattice[J]. Transportation Systems Engineering and Information, 2021, 21(3): 140-149. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202103017.htm
    [9]
    杨景峰, 朱大鹏, 赵瑞琳. 城轨网络站点重要度评估与级联失效抗毁性分析[J]. 中国安全科学学报, 2022, 32(8): 161-167. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202208023.htm

    YANG J F, ZHU D P, ZHAO R L. Evaluation of station importance and cascade failure resistance analysis of urban rail network[J]. Chinese Journal of Safety Science, 2022, 32(8): 161-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202208023.htm
    [10]
    王德龙, 王超峰. 基于蓄意攻击下的民用机场网络级联失效抗毁性分析[J]. 交通运输工程与信息学报, 2020, 18(3): 172-178. https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202003020.htm

    WANG D L, WANG C F. Destructive resistance analysis of civil airport network cascade failure based on deliberate attacks[J]. Journal of Transportation Engineering and Information, 2020, 18(3): 172-178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTGC202003020.htm
    [11]
    赵善男. 城市公共交通复合系统级联失效及故障恢复策略研究[D]. 北京: 北京交通大学, 2021.

    ZHAO S N. Research on cascade failure and fault recovery strategy of urban public transportation composite system[D]. Beijing: Beijing Jiaotong University, 2021. (in Chinese)
    [12]
    殷勇, 陈锦渠, 朱蔓, 等. 城市轨道交通站点失效修复策略[J]. 西南交通大学学报, 2020, 55(4): 865-872. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004024.htm

    YIN Y, CHEN J Q, ZHU M, et al. Urban rail transit station failure repair strategy[J]. Journal of Southwest Jiaotong University, 2020, 55(4): 865-872. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT202004024.htm
    [13]
    MA F, LIANG Y, YUEN K F, et al. Assessing the vulnerability of urban rail transit network under heavy air pollution: A dynamic vehicle restriction perspective[J]. Sustainable Cities and Society, 2020, 52: 101851.
    [14]
    张洁斐, 任刚, 马景峰, 等. 基于韧性评估的地铁网络恢复时序决策方法[J]. 交通运输系统工程与信息, 2020, 20(4): 14-20. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004003.htm

    ZHANG J F, REN G, MA J F, et al. Time-series decision method for subway network rehabilitation based on toughness assessment[J]. Transportation Systems Engineering and Information, 2020, 20(4): 14-20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202004003.htm
    [15]
    李钊, 郭燕慧, 徐国爱, 等. 复杂网络中带有应急恢复机理的级联动力学分析[J]. 物理学报, 2014, 63(15): 417-428. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201415059.htm

    LI Z, GUO Y H, XU G A, et al. Analysis of cascade dynamics with contingency recovery mechanism in complex networks[J]. Journal of Physics, 2014, 63(15): 417-428. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201415059.htm
    [16]
    唐亮, 焦鹏, 李纪康, 等. 带恢复策略的复杂网络级联失效机理及鲁棒性研究[J]. 控制与决策, 2018, 33(10): 1841-1850. https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201810016.htm

    TANG L, JIAO P, LI J K, et al. Cascade failure mechanism and robustness study of complex networks with recovery strategy[J]. Control and Decision, 2018, 33(10): 1841-1850. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KZYC201810016.htm
    [17]
    左磊. 基于复杂网络的城市公交网络特性分析[D]. 南京: 东南大学, 2015

    ZUO L. Analysis of urban bus network characteristics based on complex networks[D]. Nanjing: Southeast University, 2015. (in Chinese)
    [18]
    窦炳琳, 张世永. 复杂网络上级联失效的负载容量模型[J]. 系统仿真学报, 2011, 23(7): 1459-1463, 1468. https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htm

    DOU B L, ZHANG S Y. Load capacity model for cascading failures on complex networks[J]. Journal of System Simulation, 2011, 23(7): 1459-1463, 1468. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XTFZ201107035.htm
    [19]
    GREENBERG A, HAMILTON J, MALTZ D A, et al. The cost of a cloud: research problems in data center networks[J]. Computer Communication Review, 2008, 39(1): 68-73.
    [20]
    吕彪, 管心怡, 高自强. 地铁网络服务韧性评估与最优恢复策略[J]. 交通运输系统工程与信息, 2021, 21(5): 198-205, 221. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105021.htm

    LYU B, GUAN X Y, GAO Z Q. Subway network service resilience assessment and optimal recovery strategy[J]. Transportation System Engineering and Information, 2021, 21(5): 198-205, 221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105021.htm
    [21]
    陈长坤, 何凡, 赵冬月, 等. 基于系统机能曲线的城市道路公共交通系统韧性评估方法[J]. 清华大学学报(自然科学版), 2022, 62(6): 1016-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202206005.htm

    CHEN C K, HE F, ZHAO D Y, et al. A resilience assessment method for urban road public transportation system based on system function curve[J]. Journal of Tsinghua University(Natural Science Edition), 2022, 62(6): 1016-1022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QHXB202206005.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(7)  / Tables(4)

    Article Metrics

    Article views (431) PDF downloads(25) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return