Citation: | JIANG Han, ZHANG Jian, ZHANG Haiyan, HAO wei, MA changxi. A Multi-objective Traffic Control Method for Connected and Automated Vehicle at Signalized Intersection Based on Reinforcement Learning[J]. Journal of Transport Information and Safety, 2024, 42(1): 84-93. doi: 10.3963/j.jssn.1674-4861.2024.01.010 |
[1] |
GABRIEL R D C, PAOLO F, ROBERT H, et al. Traffic coor-dination at road intersections: autonomous decision-making algorithms using model-based heuristics[J]. IEEE Intelligent Transportation Systems Magazine, 2017, 9(1): 8-21. doi: 10.1109/MITS.2016.2630585
|
[2] |
SABOOHI Y, FARZANEH H. Model for developing an eco-driving strategy of a passenger vehicle based on the least fuel consumption[J]. Applied Energy, 2008, 86 (10): 1925-1932.
|
[3] |
袁伟, 张雅丽, 王虹霞, 等. 纯电动公交车交叉口节能驾驶策略[J]. 中国公路学报, 2021, 34(7): 54-66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107005.htm
YUAN W, ZHANG Y L, WANG H X, et al. Energy-saving driving technique for pure electric buses in intersection[J]. China Journal of Highway and Transport, 2021, 34(7): 54-66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202107005.htm
|
[4] |
XIA H, BORIBOONSOMSIN K, BARTH M. Dynamic eco-driving for signalized arterial corridors and its indirect network-wide energy/emissions benefits[J]. Journal of Intelligent Transportation Systems, 2013, 17(1): 31-41. doi: 10.1080/15472450.2012.712494
|
[5] |
WU X K, HE X Z, YU G Z, et al. Energy-optimal speed control for electric vehicles on signalized arterials[J]. IEEE Transactions on Intelligent Transportation Systems, 2015, 16(5): 2786-2796. doi: 10.1109/TITS.2015.2422778
|
[6] |
YANG J, ZHAO D, JIANG J, et al. A less-disturbed ecological driving strategy for connected and automated vehicles[J]. IEEE Transactions on Intelligent Vehicles. 2023, 8(1): 413-424. doi: 10.1109/TIV.2021.3112499
|
[7] |
LI M, WU X K, HE X Z, et al. An eco-driving system for electric vehicles with signal control under V2X environment[J]. Transportation Research Part C: Emerging Technologies, 2018, 93: 335-350. doi: 10.1016/j.trc.2018.06.002
|
[8] |
MOUSA S R, ISHAK S, MOUSA R M, et al. Deep reinforcement learning agent with varying actions strategy for solving the eco-approach and departure problem at signalized intersections[J]. Transportation Research Record: Journal of the Transportation Research Board, 2020, 2674(8): 119-131. doi: 10.1177/0361198120931848
|
[9] |
吴超仲, 冷姚, 陈志军, 等. 基于强化学习的智能车人机共融转向驾驶决策方法[J]. 交通运输工程学报, 2022, 22(3): 55-67. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203004.htm
WU C Z, LENG Y, CHEN Z J, et al. Human-machine integration method for steering decision-making of intelligent vehicle based on reinforcement learning[J]. Journal of Traffic and Transportation Engineering, 2022, 22(3): 55-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202203004.htm
|
[10] |
SHI J Q, QIAO F X, LI Q, et al. Application and evaluation of the reinforcement learning approach to eco-driving at intersections under infrastructure-to-vehicle communications[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(25): 89-98. doi: 10.1177/0361198118796939
|
[11] |
陆丽萍, 程垦, 褚端峰, 等. 基于竞争循环双Q网络的自适应交通信号控制[J]. 中国公路学报, 2022, 35(8): 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208025.htm
LU L P, CHENG K, CHU D F, et al. Adaptive traffic signal control based on dueling recurrent double Q network[J]. China Journal of Highway and Transport, 2022, 35(8): 267-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202208025.htm
|
[12] |
陈越, 焦朋朋, 白如玉, 等. 基于深度强化学习的自动驾驶车辆跟驰行为建模[J]. 交通信息与安全, 2023, 41(2): 67-75, 102. doi: 10.3963/j.jssn.1674-4861.2023.02.007
CHEN Y, JIAO P P, BAI R Y, et al. Modeling car following behavior of autonomous driving vehicles based on deep reinforcement learning[J]. Journal of Transport Information and Safety, 2023, 41(2): 67-75, 102. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.007
|
[13] |
WU T, YUAN Y L. Multi-agent deep reinforcement learning for urban traffic light control in vehicular networks[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (8): 8243-8256. doi: 10.1109/TVT.2020.2997896
|
[14] |
ZHOU M F, YU Y, QU X B. Development of an efficient driving strategy for connected and automated vehicles at signalized intersections: a reinforcement learning approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(1): 433-443. doi: 10.1109/TITS.2019.2942014
|
[15] |
GUO Q Q, OHAY A, LIU Z J, et al. Hybrid deep reinforcement learning based eco-driving for low-level connected and automated vehicles along signalized corridors[J]. Transportation Research Part C: Emerging Technologies, 2021, 124: 2-18.
|
[16] |
KURCZVEIL T, LÓPEZ P Á, SCHNIEDER E. Implementation of an energy model and a charging infrastructure in SUMO[C]. Simulation of Urban Mobility User Conference, Berlin, Germany: Springer, 2013.
|
[17] |
ZHAO W M, DONG N, SIMON S, et al. A platoon based co-operative eco-driving model for mixed automated and human-driven vehicles at a signalized intersection[J]. Transportation Research Part C: Emerging Technologies, 2018, 95: 802-821.
|
[18] |
吕能超, 王玉刚, 周颖, 等. 道路交通安全分析与评价方法综述[J]. 中国公路报, 2023, 36(4): 183-201. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304016.htm
LYU N C, WANG Y G, ZHOU Y, et al. Review on road traffic safety analysis and evaluation method[J]. China Journal of Highway and Transport, 2023, 36(4): 183-201. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202304016.htm
|
[19] |
ZHANG J, WU K R, CHENG M, et al. Safety evaluation for connected and autonomous vehicles' exclusive lanes considering penetrate ratios and impact of trucks using surrogate safety measures[J]. Journal of Advanced Transportation, 2020(2): 1-16.
|
[20] |
LILLICRAP T P, HUNT J J, PRITZEL A, et al. Continuous control with deep reinforcement learning[J]. Computer Science, 2015, 8(6): 1-14.
|
[21] |
GARCIA A G, TRIA L A R, TALAMPAS M C R. Development of an energy-efficient routing algorithm for electric vehicles[C]. 2019 IEEE Transportation Electrification Conference and Expo(ITEC), Michigan, USA: IEEE, 2019.
|