Citation: | HUANG Min, YANG Yadong, WU Xinpeng. Ship Trajectory Prediction Method of Gated Recurrent Unit Based on Spatial-temporal Attention Mechanism[J]. Journal of Transport Information and Safety, 2023, 41(6): 82-89. doi: 10.3963/j.jssn.1674-4861.2023.06.009 |
[1] |
严新平, 李晨, 刘佳仑, 等. 新一代航运系统体系架构与关键技术研究[J]. 交通运输系统工程与信息, 2021, 21(5): 22-29, 76. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm
YAN X P, LI C, LIU J L, et al. Architecture and key technologies for new generation of waterborne transportation system[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 22-29, 76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm
|
[2] |
YANG D, WU L, WANG S, et al. How big data enriches maritime research: a critical review of automatic identification system (AIS)data applications[J]. TransportReviews, 2019, 39(3): 1-19. http://www.semanticscholar.org/paper/ffb2d6dba4c557d948ff0e8acd3d0dd09ef4e226
|
[3] |
江海洋, 高超, 马勇. 基于FP-TSDP算法的船舶轨迹压缩[J]. 无人系统技术, 2022, 5(1): 36-42. https://www.cnki.com.cn/Article/CJFDTOTAL-UMST202201004.htm
JIANG H Y, GAO C, MA Y, Ship trajectory compression based on FP-TSDP algorithm[J]. Unmanned Systems Technology, 2022, 5(1): 36-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-UMST202201004.htm
|
[4] |
姜佰辰, 关键, 周伟, 等. 基于多项式卡尔曼滤波的船舶轨迹预测算法[J]. 信号处理, 2019, 35(5): 741-746. https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201905002.htm
JIANG B C, GUAN J, ZHOU W, et al. Vessel trajectory prediction algorithm based on polynomial fitting kalman filtering[J]. Journal of Signal Processing, 2019, 35(5): 741-746. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXCN201905002.htm
|
[5] |
高建, 毛莺池, 李志涛. 基于高斯混合-时间序列模型的轨迹预测[J]. 计算机应用, 2019, 39(8): 2261-2270. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201908015.htm
GAO J, MAO Y C, LI Z T, et al. Trajectory prediction based on gauss mixture time series model[J]. Journal of Computer Applications, 2019, 39(8): 2261-2270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJY201908015.htm
|
[6] |
周艳萍, 曾宪群, 蔡玲. 改进灰色模型的船舶航行轨迹自动预测研究[J]. 舰船科学技术, 2021, 43(20): 34-36. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202120013.htm
ZHOU Y P, ZENG X Q, CAI L. Research on automatic prediction of ship trajectory based on improved grey model[J]. Ship Science and Technology, 2021, 43(20): 34-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX202120013.htm
|
[7] |
冯然, 张力仁, 王立辉. 基于二阶马尔可夫链的不确定性轨迹预测[J]. 测绘与空间地理信息, 2020, 43(增刊1): 207-211. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH2020S1062.htm
FENG R, ZHANG L R, WANG L H. Uncertainty trajectory prediction based on second-order markov chain[J]. Geomatics & Spatial Information Technology, 2020, 43 (S1): 207-211(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH2020S1062.htm
|
[8] |
甄荣, 金永兴, 胡勤友, 等. 基于AIS信息和BP神经网络的船舶航行行为预测[J]. 中国航海, 2017, 40(2): 6-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
ZHEN R, JIN Y X, HU Q Y, et al. Prediction of ship navigation behavior based on AIS information and BP neural network[J]. China Navigation, 2017, 40(2): 6-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201702002.htm
|
[9] |
高天航, 徐力, 靳廉洁, 等. 考虑航艏向与数据变化差异的船舶轨迹预测[J]. 交通运输系统工程与信息, 2021, 21(1): 90-94. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101015.htm
|
[10] |
LI H H, JIAO H, YANG Z L. AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods[J]. Transportation Research Part E, 2023, 175: 103152. doi: 10.1016/j.tre.2023.103152
|
[11] |
李岩. 基于深度学习的船舶航行轨迹预测方法研究[D]. 武汉: 武汉理工大学, 2021.
LI Y. Study on deep learning based vessel trajectory prediction methods[D]. Wuhan: Wuhan University of Technology, 2021. (in Chinese)
|
[12] |
CHEN X, WEI C, ZHOU G, et al. Automatic identification system(AIS) data supported ship trajectory prediction and analysis via a deep learning model[J]. Journal of Marine Science and Engineering, 2022, 10(9): 1314. doi: 10.3390/jmse10091314
|
[13] |
GAO D W, ZHU Y S, ZHANG J F, et al. A novel MP-LSTM method for ship trajectory prediction based on AIS data[J]. Ocean Engineering, 2021(228): 108956
|
[14] |
王知昊, 元海文, 李维娜, 等. 交汇水域船舶轨迹预测与航行意图识别[J]. 交通信息与安全, 2022, 40(4): 101-109. doi: 10.3963/j.jssn.1674-4861.2022.04.011
WANG Z H, YUAN H W, LI W N, et al. Trajectory prediction and intention identification of ships in confluence waters[J]. Journal of Transport Information and Safety, 2022, 40 (4): 101-109. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.04.011
|
[15] |
CHEN J, CHEN H, ZHAO Y, et al. FB-BiGRU: a deep learning model for AIS-based vessel trajectory curve fitting and analysis[J]. Ocean Engineering, 2022, 266: 112898 doi: 10.1016/j.oceaneng.2022.112898
|
[16] |
ZHANG L, ZHANG J Z, NIU J, et al. Track prediction for HF radar vessels submerged in strong clutter based on MSCNN fusion with GRU-AM and AR model[J]. Remote Sensing, 2021, 13(11): 2164-2164. doi: 10.3390/rs13112164
|
[17] |
WANG S W, LI Y, XING H. A novel method for ship trajectory prediction in complex scenarios based on spatio-temporal features extraction of AIS data[J]. Ocean Engineering, 2023, 281: 114846. doi: 10.1016/j.oceaneng.2023.114846
|
[18] |
DUAN Y, CAO X, ZHAO J, et al. Health indicator construction and status assessment of rotating machinery by spatio-temporal fusion of multi-domain mixed features[J]. Measurement, 2022, 205: 112170. doi: 10.1016/j.measurement.2022.112170
|
[19] |
BAO K, BI J, GAO M, et al. An improved ship trajectory prediction based on AIS data using MHA-BiGRU[J]. Journal of Marine Science and Engineering, 2022, 10(6): 804. doi: 10.3390/jmse10060804
|
[20] |
崔文岳, 谷远利, 赵胜利, 等. 基于有向图卷积与门控循环单元的短时交通流预测方法[J]. 交通信息与安全, 2023, 41 (2): 121-128. doi: 10.3963/j.jssn.1674-4861.2023.02.013
CUI W Y, GU Y L, ZHAO S L, et al. A method of predicting short-term traffic flows based on a DGC-GRU model[J]. Journal of Transport Information and Safety, 2023, 41(2): 121-128. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.02.013
|
[21] |
GUO M, XU T, LIU J, et al. Attention mechanisms in computer vision: a survey[J]. Computational Visual Media, 2022, 8(3): 331-368. doi: 10.1007/s41095-022-0271-y
|
[22] |
郭玲, 于海雁, 周志权. 基于SimAM注意力机制的近岸船舶检测方法[J]. 哈尔滨工业大学学报, 2023, 55(5): 14-21. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202305002.htm
GUO L, YU H Y, ZHOU Z Q. Nearshore ship detection method based on SimAM attention mechanism[J]. Journal of Harbin Institute of Technology, 2023, 55(5): 14-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX202305002.htm
|
[23] |
NIU Z Y, ZHONG G Q, YU H. Areview on the attention mechanism of deep learning[J]. Neurocomputing, 2021, 452: 48-62. doi: 10.1016/j.neucom.2021.03.091
|