Citation: | CAO Jingjing, YU Zhou, LI Pengfei, MIN Yanping, HUANG Qixian, ZHAO Qiangwei. A Recognition Model for Violent Sorting Activity Based on the ST-AGCN Algorithm[J]. Journal of Transport Information and Safety, 2023, 41(5): 115-126. doi: 10.3963/j.jssn.1674-4861.2023.05.012 |
[1] |
顾欣. 高速公路互通立交合流区交通冲突预测模型研究[D]. 南京: 东南大学, 2022.
GU X. Research on prediction model of traffic conflict in the confluence area of expressway interchange[D]. Nanjing: Southeast University, 2022. (in Chinese)
|
[2] |
谭志荣, 陈维, 王辉, 等. 基于视频识别技术的船舶视觉盲区增强方法研究[J]. 中国水运, 2020, 12(2): 108-109.
TAN Z R, CHEN W, WANG H, et al. Research on the enhancement method of ship visual blind spot based on video recognition technology[J]. China Water Transport, 2020, 12 (2): 108-109. (in Chinese)
|
[3] |
丁奥, 张媛, 朱磊, 等. 基于加速度分布特征的快递暴力分拣识别方法[J]. 包装工程, 2020, 41(23): 162-171.
DING A, ZHANG Y, ZHU L, et al. Recognition method for rough handling of express parcels based on acceleration distribution features[J]. Packaging Engineering, 2020, 41(23): 162-171. (in Chinese)
|
[4] |
徐燕, 刘军, 周丽, 等. 防暴力分拣的主动式快递分拣作业辅助和评价系统及方法: CN201910942514.1[P]. 2019-12-06.
XU Y, LIU J, ZHOU L, et al. Active express sorting operation assistance and evaluation system and method for anti-violent sorting: CN201910942514. 1[P]. 2019-12-06. (in Chinese)
|
[5] |
范洪博, 郭全, 张晶, 等. 1种基于LoRa的防暴力分拣防丢的物流实时监控装置: CN201820075504. 3[P]. 2018-10-12.
FAN H B, GUO Q, ZHANG J, et al. A new real-time logistics monitoring device based on LoRa: CN201820075504.3[P]. 2018-10-12. (in Chinese)
|
[6] |
尚淑玲. 基于计算机视觉的物流暴力分拣行为识别[J]. 计算机仿真, 2013, 30(12): 430-433.
SHANG S L. Identification of logistics violence sorting behavior based on computer vision[J]. Computer Simulation, 2013, 30(12): 430-433. (in Chinese)
|
[7] |
罗雪阳, 蔡锦达. 基于深度学习的图像分类算法框架研究[J]. 包装工程, 2021, 42(21): 181-187.
LUO X Y, CAI J D. Research on image classification algorithm framework based on deep learning[J]. Packaging Engineering, 2021, 42(21): 181-187. (in Chinese)
|
[8] |
DU Y, WANG W, WANG L. Hierarchical recurrent neural network for skeleton based action recognition[C]. IEEE Conference on Computer Vision and Pattern Recognition(CVPR), Boston, MA, USA: IEEE, 2015.
|
[9] |
FENG J G, ZHANG S Y, XIAO J. Explorations of skeleton features for LSTM-based action recognition[J]. Multimed Tools Appl, 2017, 78(1): 591-603.
|
[10] |
ZHU A C, WU Q Y, CUI R, et al. Exploring a rich spatial-temporal dependent relational model for skeleton-based action recognition by bidirectional LSTM-CNN[J]. Neurocomputing, 2020(5): 90-100.
|
[11] |
DING Y K, ZHU Y L, WU Y R, et al. Spatio-temporal attention LSTM model for flood forecasting[C]. IEEE Green Computing and Communications and IEEE Cyber, Physical and Social Computing and IEEE Smart Data, Atlanta, GA, USA: IEEE, 2019.
|
[12] |
LIU J, SHAHROUDY A, XU D, et al. Skeleton-based action recognition using spatio-temporal LSTM network with trust gates[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 40(12): 3007-3021.
|
[13] |
YANG J Y, LIU W, YUAN J S, et al. Hierarchical soft quantization for skeleton-based human action recognition[J]. IEEE Transactions on Multimedia, 2020, 23: 883-898.
|
[14] |
KIPF T N, WELLING M. Semi-supervised classification with graph convolutional networks[J]. arXiv preprint arXiv, 2016, 1609, 2907.
|
[15] |
SHI L, ZHANG Y F, CHENG J, et al. Two-stream adaptive graph convolutional networks for skeleton-based action recognition[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, USA: IEEE, 2019.
|
[16] |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. 32nd AAAI Conference on Artificial Intelligence, New Orleans, Lousiana, USA: AAAI, 2018.
|
[17] |
CHENG K, ZHANG Y F, HE X Y, et al. Skeleton-based action recognition with shift graph convolutional network[C]. The IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA: IEEE, 2020.
|
[18] |
翟龙真. 基于人因工程学的快递分拣作业优化研究[D]. 长沙: 南华大学, 2016.
ZHAI L Z. Research on optimization of express sorting operation based on human factors engineering[D]. Changsha: University of South China, 2016. (in Chinese)
|
[19] |
刘星余. 面向物流仓储分拣机器人的多目标视觉识别与定位方法研究[J]. 粘接, 2021, 47(7): 109-112.
LIU X Y. Research on multi-objective visual recognition and positioning method for logistics warehousing and sorting robot[J]. Adhesion, 2021, 47(7): 109-112. (in Chinese)
|
[20] |
李龙棋, 方美发, 唐晓腾. 树莓派平台下的实时监控系统开发[J]. 闽江学院学报, 2014, 35(5): 67-72.
LI L Q, FANG M F, TANG X T. Development of real-time monitoring system based on raspberry pie platform[J]. Journal of Minjiang University, 2014, 35(5): 67-72. (in Chinese)
|
[21] |
CAO Z, SIMON T, WEI S E, et al. Realtime multi-person 2D pose estimation using part affinity fields[C]. 2017 IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA: IEEE, 2017, 143.
|
[22] |
刘勇, 李杰, 张建林, 等. 基于深度学习的二维人体姿态估计研究进展[J]. 计算机工程, 2021, 47(3): 1-16.
LIU Y, LI J, ZHANG J L, et al. Research progress of 2D human pose estimation on deep learning[J]. Computer Engineering, 2021, 47(3): 1-16. (in Chinese)
|
[23] |
WEBERING F, BLUME H, ALLAHAM I. Markerless camera-based vertical jump height measurement using OpenPose[C]. The IEEE/ CVF Conference on Computer Vision and Pattern Recognition, Online: IEEE, 2021.
|
[24] |
SAHIN I, MODI A, KOKKONI E. Evaluation of OpenPose for quantifying infant reaching motion[J]. Arch Phys Med Rehabil, 2021, 102(10): e86.
|
[25] |
PAPANDREOU G, ZHU T, CHEN L C, et al. PersonLab: Person pose estimation and instance segmentation with a bottom-up, part-based, geometric embedding model[C]. Computer Vision -European Conference on Computer Vision, Munich, Germany: ECCV, 2018.
|
[26] |
WEI S E, RAMAKRISHNA V, KANADE T, et al. Convolutional pose machines[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, USA: IEEE, 2016.
|
[27] |
YAN S J, XIONG Y J, LIN D H. Spatial temporal graph convolutional networks for skeleton-based action recognition[C]. AAAI Conference on Artificial Intelligence, New Orleans, Louisiana, USA: AAAI, 2018.
|
[28] |
MAO X X, WU S X, XIAN B L, et al. Adaptive graph convolution and LSTM action recognition based on skeleton[J]. Journal of East China University of Science and Technology, 2021, 48: 1-10.
|
[29] |
刘海洲, 张敬宇. 基于大数据的城市轨道交通出行站外OD位置点识别方法研究[J]. 铁道运输与经济, 2022, 44(8): 115-122.
LIU H Z, ZHANG J Y. Research on OD location point identification method outside urban rail transit travel stations based on big data[J]. Railway Transport and Economy, 2022, 44(8): 115-122. (in Chinese)
|
[30] |
DEMOKRI D P, JOUDAKI S, KOLIVAND H. A new traffic sign recognition technique taking shuffled frog-leaping algorithm into account[J]. Wireless Personal Communications, 2022, 125(4): 11-17.
|