Citation: | WU Jianhua, PENG Hu, WANG Chen, FU Peng. A Detection Method for Maritime Traffic Accidents Based on AIS Communication Volume[J]. Journal of Transport Information and Safety, 2023, 41(5): 83-94. doi: 10.3963/j.jssn.1674-4861.2023.05.009 |
[1] |
李文杰, 于凇凌, 杜洪波, 等. 内河航运需求与腹地经济产业结构的相关性分析[J]. 水运工程, 2022(4): 88-93.
LI W J, YU S L, DU H B, et al. Correlation analysis of inland waterway shipping demand and industrial structure of hinterland economy[J]. Port and Waterway Engineering, 2022(4): 88-93. (in Chinese)
|
[2] |
刘儿七. 国内外内河航运发展现状和趋势[J]. 港口科技, 2019, (5): 45-48.
LIU E Q. Current situation and trends of inland navigation development at home and abroad[J]. Science & Technology of Ports, 2019, (5): 45-48. (in Chinese)
|
[3] |
CHEN C, WU Q, GAO S. Mining of inland water traffic accident data using a biclustering algorithm: A case study of the Yangtze River[J]. Journal of Risk and Reliability, 2019, 233 (1): 48-57.
|
[4] |
郑中义, 吴兆麟, 杨丹. 港口船舶事故致因的灰色关联分析模型[J]. 大连海事大学学报, 1997, (2): 62-65.
ZENG Z Y, WU Z L, YANG D. Analysis model of accident's main causes on port vessels incidence by grey system theory[J]. Journal of Dalian Maritime University 1997, (2): 62-65. (in Chinese)
|
[5] |
王海燕, 刘清. 水上船舶交通事故人为因素致因机理[J]. 中国航海, 2016, 39(3): 41-44.
WANG H Y, LIU Q. Accident-causing mechanism of human errors in marine navigation[J]. Navigation of China, 2016, 39 (3): 41-44. (in Chinese)
|
[6] |
FAN L, WANG M, YIN J. The impacts of risk level based on PSC inspection deficiencies on ship accident consequences[J]. Research in Transportation Business and Management, 2020, 33: 100464.
|
[7] |
RAHMAN S. Introduction of Bayesian network in risk analysis of maritime accidents in Bangladesh[C]. The 1st International Conference on Mechanical Engineering and Applied Science, Dhaka, Bangladesh: AIP Publishing LLC, 2017.
|
[8] |
BEATRIZ N, RAFET E. Marine accident learning with fuzzy cognitive maps: a method to model and weight human-related contributing factors into maritime accidents[J]. Ship and Offshore Structure, 2020, 17(3): 555-563.
|
[9] |
李奕良. 基于贝叶斯网络的干散货船舶自沉事故致因分析[D]. 大连: 大连海事大学, 2020.
LI Y L. Cause analysis of ship foundering accident of dry bulk carrier based on Bayesian network[D]. Dalian: Dalian Maritime University, 2020. (in Chinese)
|
[10] |
DEBNATH A K, CHIN H C. Navigational traffic conflict technique: a proactive approach to quantitative measurement of collision risks in port waters[J]. The Journal of Navigation, 2010, 63(1): 137-152. doi: 10.1017/S0373463309990233
|
[11] |
OROVI B, DJUROVI P. Research of marine accidents through the prism of human factors[J]. Promet - Traffic - Traffico, 2013, 25(4): 369-377. doi: 10.7307/ptt.v25i4.1210
|
[12] |
REKHA A G, PONNAMBALAM L, ABDULLA M S. Predicting maritime groundings using support vector data description model[C]. International Symposium on Intelligence Computation and Applications. Singapore: Springer, 2015.
|
[13] |
徐东星, 尹勇, 张秀凤, 等. 基于改进三参数灰色模型的海上交通事故预测[J]. 中国航海, 2020, 43(1): 12-17.
XU D X, YIN Y, ZHANG X F, et al. Improved three-parameter grey model for prediction of marine traffic accidents[J]. Navigation of China, 2020, 43(1): 12-17. (in Chinese)
|
[14] |
范中洲, 赵羿, 周宁, 等. 基于灰色BP神经网络组合模型的水上交通事故数预测[J]. 安全与环境学报, 2020, 20(3): 857-861.
FAN Z Z, ZHAO Y, ZHOU N, et al. Integrated model for forecasting waterway traffic accident based on Gray-BP neural network[J]. Journal of Safety and Environment, 2020, 20 (3): 857-861. (in Chinese)
|
[15] |
张逸飞, 付玉慧. 基于ARIMA-BP神经网络的船舶交通事故预测[J]. 上海海事大学学报, 2020, 41(3): 47-52.
ZHANG Y F, FU Y H. Prediction of ship traffic accidents based on ARIMA-BP neural network[J] Journal of Shanghai Maritime University, 2020, 41(3): 47-52. (in Chinese)
|
[16] |
黄琛, 陈德山, 吴兵, 等. 船舶航行交通事件实时检测技术研究现状与展[J]. 交通信息与安全, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001
HUANG C, CHEN D S, WU B, et al. A real-time detection of nautical traffic events: A review and prospect[J]. Journal of Transport Information and Safety, 2022, 40(6): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.06.001
|
[17] |
刘人杰, 刘畅, 黄习刚. 船舶自动识别系统的信息传输[J]. 中国航海, 2002(3): 43-46.
LIU R J, LIU C, HUANG X G. The Information transmission of marine AIS[J]. Navigation of China, 2002(3): 43-46. (in Chinese)
|
[18] |
刘彤, 吴建华, 雷金平. AIS通信系统性能分析[J]. 交通科技, 2004(4): 134-136.
LIU T, WU J H, LEI J P. Analysis of the AIS communication system performance[J]. Transportation Science & Technology, 2004(4): 134-136.
|
[19] |
TRUONG C, OUDRE L, VAYATIS N. Selective review of offline change point detection methods[J]. Signal Processing, 2019, 167: 107299.
|
[20] |
庞景月. 滑动窗口模型下的数据流自适应异常检测方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2013.
PANG J Y. Adaptive anomoly detection for data stream of sequence-based slinding windows model[D]. Harbin: Harbin Institute of Technology. 2013. (in Chinese)
|
[21] |
程小洋. 交通事件检测算法的阈值自适应调整与优化[D]. 南京: 东南大学, 2021.
CHEN X Y. A thesis submitted to southeast university for the academic degree of master of engineering[D]. Nanjing: Southeast University, 2021. (in Chinese)
|
[22] |
王国胤, 李德毅, 姚一豫. 云模型与粒计算[M]. 北京: 科学出版社, 2012.
WANG G Y, LI D Y, YAO Y Y. Cloud model and granular computing[M]. Beijing: Science Press, 2012. (in Chinese).
|
[23] |
CHANG L X, GUO Y W, QING H Z. A new multi-step backward cloud transformation algorithm based on normal cloud model[J]. Fundamenta Informaticae, 2014, 133(1): 55-85.
|