Citation: | WANG Chaojian, ZHANG Daowen, JIANG Jun, XIAO Le. An Analysis of Fatal Accident Rates of Passenger Cars on Urban Roads Considering Imbalanced Data Samples[J]. Journal of Transport Information and Safety, 2023, 41(5): 43-53. doi: 10.3963/j.jssn.1674-4861.2023.05.005 |
[1] |
刘爱华, 叶植材. 中国统计年鉴—2020[M]. 北京: 中国统计出版社, 2020.
LIU A H, YE Z C. China statistical yearbook – 2020[M]. Beijing: China Statistics Press, 2020. (in Chinese)
|
[2] |
胡宗品, 骆仁佳, 于淑君. 城市死亡交通事故形态影响因素分析[J]. 交通科技与经济, 2022, 24(1): 25-29, 37.
HU Z P, LUO R J, YU S J. Analysis of influencing factors on urban fatal crash types[J]. Technology & Economy in Areas of Communications, 2022, 24(1): 25-29, 37. (in Chinese)
|
[3] |
赵琳娜, 贾兴无, 戴帅, 等. 中国城市道路交通安全特点解析[J]. 城市交通, 2018, 16(3): 9-14, 20.
ZHAO L N, JIA X W, DAI S, et al. Characteristics of urban road traffic safety in China[J]. Urban Transport of China, 2018, 16(3): 9-14, 20. (in Chinese)
|
[4] |
张道文, 母尧尧, 王朝健, 等. 城市道路交通事故特性及严重程度研究[J]. 安全与环境学报, 2022, 22(2): 599-605.
ZHANG D W, MU Y Y, WANG C J, et al. Research on characteristics and severity of urban road traffic accidents[J]. Journal of Safety and Environment, 2022, 22(2): 599-605. (in Chinese)
|
[5] |
FOUNTAS G, ANASTASOPOULOS P C. Analysis of accident injury-severity outcomes: the zero-inflated hierarchical ordered probit model with correlated disturbances[J]. Analytic Methods in Accident Research, 2018, 20: 30-45. doi: 10.1016/j.amar.2018.09.002
|
[6] |
WEN X, XIE Y, JIANG L, et al. Applications of machine learning methods in traffic crash severity modelling: current status and future directions[J]. Transport Reviews, 2021, 41(6): 855-879. doi: 10.1080/01441647.2021.1954108
|
[7] |
MORAL-GARCÍA S, CASTELLANO J G, MANTAS C J, et al. Decision tree ensemble method for analyzing traffic accidents of novice drivers in urban areas[J]. Entropy, 2019, 21(4): 360. doi: 10.3390/e21040360
|
[8] |
SHAIK M E, ISLAM M M, HOSSAIN Q S. A review on neural network techniques for the prediction of road traffic accident severity[J]. Asian Transport Studies, 2021, 7: 100040. doi: 10.1016/j.eastsj.2021.100040
|
[9] |
吕通通, 张湛, 陆林军, 等. 基于互信息贝叶斯网络的交通事故严重程度分析[J]. 交通信息与安全, 2021, 39(6): 36-43. doi: 10.3963/j.jssn.1674-4861.2021.06.005
LYU T T, ZHANG Z, LU L J, et al. An analysis of traffic accident severity based on mutual-information Bayesian net-work[J]. Journal of Transport Information and Safety, 2021, 39(6): 36-43. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.06.005
|
[10] |
李贵阳, 张福明, 王永岗. 基于SVM模型的山区高速公路多车事故影响因素分析[J]. 武汉理工大学学报(交通科学与工程版), 2020, 44(6): 1046-1051. doi: 10.3963/j.issn.2095-3844.2020.06.020
LI G Y, ZHANG F M, WANG Y G, et al. Influencing factors analysis of multiple vehicle accidents in mountainous expressway based on SVM mode[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2020, 44(6): 1046-1051. (in Chinese) doi: 10.3963/j.issn.2095-3844.2020.06.020
|
[11] |
VILAÇA M, MACEDO E, COELHO M C. A rare event modelling approach to assess injury severity risk of vulnerable road users[J]. Safety, 2019, 5(2): 29. doi: 10.3390/safety5020029
|
[12] |
方方, 王昕. 基于集成学习的不平衡交通事故风险研究[J]. 北京信息科技大学学报(自然科学版), 2021, 36 (06): 19-24.
FANG F, WANG X. Research on unbalanced traffic accident risk based on ensemble learning[J]. Journal of Beijing Information Science & Technology University, 2021, 36(06): 19-24. (in Chinese)
|
[13] |
恽天翔. 基于机器学习的道路交通事故严重程度分析和预测[D]. 南京: 南京师范大学, 2021.
YUN T X. Road traffic accident severity Analysis and prediction based on machine learning[D]. Nanjing: Nanjing Normal University, 2021. (in Chinese)
|
[14] |
YANG C, CHEN M, YUAN Q. The application of XGBoost and SHAP to examining the factors in freight truck-related crashes: an exploratory analysis[J]. Accident Analysis & Prevention, 2021, 158: 106153.
|
[15] |
束鹍. 基于可解释机器学习的城市道路交通事故严重程度预测[D]. 西安: 长安大学, 2021.
SHU K. Analysis of factors contributing to crash severity on urban road based on explainable machine learning[D]. Xi'an: Chang'an University, 2021. (in Chinese)
|
[16] |
胡立伟, 赵雪亭, 杨锦青, 等. 城市快速过境通道衔接节点交通风险耦合致因模型研究[J]. 中国安全生产科学技术, 2019, 15(12): 150-155.
HU L W, ZHAO X T, YANG J Q, et al. Research on coupling cause model of traffic risk in connecting nodes of urban rapid transit channels[J]. Journal of Safety Science and Technology, 2019, 15(12): 150-155. (in Chinese)
|
[17] |
魏珊珊. 基于数据挖掘的危险货物道路运输事故机理研究[D]. 西安: 长安大学, 2021.
WEI S S. Application of data mining for the mechanism of hazardous materials road transport accidents[D]. Xi'an: Chang'an University, 2021. (in Chinese)
|
[18] |
刘晨. 基于NAIS的交通伤严重程度影响因素研究[D]. 北京: 清华大学, 2015.
LIU C. Study of influencing factors on traffic injury severity based on the NAIS[D]. Beijing: Tsinghua University, 2015. (in Chinese)
|
[19] |
陈彬, 于鹏程, 张奇. 基于Apriori算法的特殊路段事故致因关联规则挖掘研究[J]. 道路交通管理, 2022(3): 34-37.
CHEN B, YU P C, ZHANG Q. Research on Mining cause-related association rules of special road accidents based on Apriori algorithm[J]. Road Traffic Control, 2022(3): 34-37. (in Chinese)
|
[20] |
THAMMASIRI D, DELEN D, MEESAD P, et al. A critical assessment of imbalanced class distribution problem: the case of predicting freshmen student attrition[J]. Expert Systems with Applications, 2014, 41(2): 321-330 doi: 10.1016/j.eswa.2013.07.046
|
[21] |
李蒙蒙, 刘艺, 李庚松, 等. 不平衡多分类算法综述[J/OL]. 计算机应用: 1-17[2022-05-24].
LI M M, LIU Y, LI G S, et al. Survey on imbalanced multi-class classification algorithms[J/OL]. Journal of Computer Applications: 1-17[2022-05-24].
|
[22] |
DELEN D, TOMAK L, TOPUZ K, et al. Investigating injury severity risk factors in automobile crashes with predictive analytics and sensitivity analysis methods[J]. Journal of Transport & Health, 2017(4): 118-131.
|
[23] |
CHAWLA N V, BOWYER K W, HALL L O, et al. SMOTE: synthetic minority over-sampling technique[J]. Journal of artificial intelligence research, 2002, 16: 321-357. doi: 10.1613/jair.953
|
[24] |
任化娟. 面向不平衡数据的分类方法研究[D]. 郑州: 郑州大学, 2020.
REN H J. Research on methods for classifying imbalanced data[D]. Zhengzhou: Zhengzhou University. (in Chinese)
|
[25] |
MENG H, AN X, XING J. A data-driven Bayesian network model integrating physical knowledge for prioritization of risk influencing factors[J]. Process Safety and Environmental Protection, 2022, 160: 434-449.
|
[26] |
谢小慧. 基于的水质评价及水质因子关联性分析[D]. 成都: 西南交通大学, 2019.
XIE X H. WATER Quality evaluation and correlation analysis of indicators based on bayesian network[D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese)
|
[27] |
董傲然, 王长帅, 秦丹, 等. 机动车-行人事故中行人伤害严重程度分析[J]. 中国安全科学学报, 2020, 30(11): 141-147.
DONG A R, WANG C S, QIN D, et al. Analysis on injury severity of pedestrian in motor vehicle-pedestrian accidents[J]. China Safety Science Journal, 2020, 30(11): 141-147. (in Chinese).
|
[28] |
王精滢. 考虑空间异质性的机非交通事故严重程度分析[D]. 成都: 西南交通大学, 2020.
WANG J Y. Severity analysis of motorized and non-motorized vehicle crashes considering spatial heterogeneity[D]. Chengdu: Southwest Jiaotong University, 2020. (in Chinese).
|
[29] |
王琳琳. 交叉口交通事故损伤严重程度与影响因素分析[D]. 青岛: 山东科技大学, 2020.
WANG L L. Analysis on injury severity and influencing factors of traffic accidents at intersections[D]. Qingdao: Shandong University of Science and Technology, 2020. (in Chinese).
|
[30] |
LI Z, WU Q, CI Y, et al. Using latent class analysis and mixed logit model to explore risk factors on driver injury severity in single-vehicle crashes[J]. Accident Analysis & Prevention, 2019, 129: 230-240.
|
[31] |
张礼宁. 典型天气条件下山地城市道路异常驾驶行为研究[D]. 重庆: 重庆交通大学, 2021.
ZHANG L L. Research on abnormal driving behavior of mountain city road under typical weather conditions[D]. Chongqin: Chongqing Jiaotong University, 2021. (in Chinese)
|
[32] |
LEEVY J L, KHOSHGOFTAAR T M, BAUDER R A, et al. A survey on addressing high-class imbalance in big data[J]. Journal of Big Data, 2018, 5(1): 1-30
|