Citation: | LIU Qingmei, WAN Ming, YAN Lixin, GUO Junhua. A Method for Predicting Traffic Accidents Based on an Ensemble Empirical Mode Decomposition and an Optimized LSTM Model[J]. Journal of Transport Information and Safety, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002 |
[1] |
PARVAREH M, KARIMIA, REZAEIS, et al. Assessment and prediction of road accident Injuries trend using timeseries models in Kurdistan[J]. Burns & Trauma, 2018, 6(1): 55-62.
|
[2] |
HUANG T Y, WANG Y. Forecasting model of urban traffic accidents based on Grey Model-GM(1, 1)[C]. Second Workshop on Digital Media and its Application in Museum & Heritages(DMAMH 2007), Chongqing, China: IEEE, 2008.
|
[3] |
XU CH CH, WANG W, LI Z B, et al. Using support vector machine models for crash injury severity analysis[J]. Accident Analysis & Prevention, 2012, 45 (2): 478-486.
|
[4] |
谢学斌, 孔令燕. 基于ARIMA和XGBoost组合模型的交通事故预测[J]. 安全与环境学报, 2021, 21 (1): 277-284.
XIE X B, KONG L Y. On the ways to the traffic accident prediction based on the AMRIA and XGBoost combined model[J]. Journal of Safety and Environment, 2021, 21(1): 277-284. (in Chinese)
|
[5] |
DOGRU N, SUBASI A. Traffic accident detection using random forest classifier[C]. 2018 15th Learning and Technology Conference(L&T), Jeddah, Saudi Arabia: IEEE, 2018.
|
[6] |
李文书, 邹涛涛, 王洪雁, 等. 基于双尺度长短期记忆网络的交通事故量预测模型[J]. 浙江大学学报(工学版), 2020, 54 (8): 1613-1619.
LI W S, ZOU T T, WANG H Y, et al. Traffic accident quantity prediction model based on dual-scale long short-term memory network[J]. Journal of Zhejiang University(Engineering Science), 2020, 54 (8): 1613-1619. (in Chinese)
|
[7] |
ZHENG M, LI T, ZHU R, et al. Traffic accident's severity prediction: A deep-learning approach-based CNN network[J]. IEEE Access, 2019, 7: 39897 - 39910. doi: 10.1109/ACCESS.2019.2903319
|
[8] |
ZHANG Z H, YANG W Z, WUSHOUR S. Traffic accident prediction based on LSTM-GBRT model[J]. Journal of Control Science and Engineering, 2020, 2020 (20): 1-10.
|
[9] |
LIN F, XU Y, YANG Y, et al. A spatial-temporal hybrid model for short-term traffic prediction[J]. Mathematical Problems in Engineering, 2019, 2019 (PT. 1): 1-12.
|
[10] |
HUANG N E, WU Z H. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 2009 (1): 1-41.
|
[11] |
KIM N S, CHUNG K, AHN S, et al. Denoising traffic collision data using ensemble empirical mode decomposition (EEMD)and its application for constructing continuous risk profile(CRP)[J]. Accident Analysis & Prevention, 2014, 71 (1), 29-37.
|
[12] |
马莹莹, 靳雪振. 基于EEMD和小波阈值的短时交通流预测研究[J]. 重庆交通大学学报(自然科学版), 2022, 41 (6): 22-29.
MA Y Y, JIN X Z. Short-term traffic flow forecast method based on EEMD-Wavelet threshold[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(6): 22-29. (in Chinese)
|
[13] |
王盛, 杨信丰. 基于EEMD-GWO-LSSVM的公共交通短期客流预测[J]. 计算机工程与应用, 2019, 55(20): 216-221, 239.
WANG S, YANG X F. Short-Term passenger flow forecasting of public transport based on EEMD-GWO-LSSVM[J]. Computer Engineering and Applications, 2019, 55(20): 216-221, 239. (in Chinese)
|
[14] |
肖进丽, 李晓磊. 基于集合经验模态分解和差分进化算法优化BP神经网络的船舶交通流预测[J]. 大连海事大学学报, 2018, 44 (2): 9-14. doi: 10.3969/j.issn.1671-7031.2018.02.003
XIAO J L, LI X L. Vessel traffic flow prediction method based on ensemble empirical mode decomposition and back propagation neural network optimized with differential evolution algorithm[J]. Journal of Dalian Maritime University, 2018, 44 (2): 9-14. (in Chinese) doi: 10.3969/j.issn.1671-7031.2018.02.003
|
[15] |
殷礼胜, 唐圣期, 李胜, 等. 基于EEMD-IPSO-LSSVM的交通流组合预测模型[J]. 电子测量与仪器学报, 2019, 33 (12): 126-133.
YIN S L, TANG S Q, LI S, et al. Combined model based on EEMD-IPSO-LSSVM for short-term flow traffic prediction[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33 (12): 126-133. (in Chinese)
|
[16] |
刘东辉, 肖雪, 张珏. 基于粒子群和LSTM模型的变区间短时停车需求预测方法[J]. 交通信息与安全, 2021, 39 (4): 77-83. doi: 10.3963/j.jssn.1674-4861.2021.04.010
LIU D H, XIAO X, ZHANG J. A prediction method for short-term parking demands in variable interval based on particle swarm optimization and LSTM model[J]. Journal of Transport Information and Safety, 2021, 39(4): 77-83. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.010
|
[17] |
史宇辰, 晏松, 姚丹亚, 等. 基于SVM-LSTM的车辆跟驰行为识别与信息可信甄别[J]. 交通运输工程学报, 2022, 22 (3): 115-125.
SHI Y C, YAN S, YAO D Y. SVM-LSTM-based car-following behavior recognition and information credibility discirmination[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (3): 115-125. (in Chinese)
|
[18] |
熊晓夏, 刘擎超, 沈钰杰, 等. 基于LSTM-BF的高速公路交通事故风险模型[J]. 中国安全科学学报, 2022, 32(5): 170-176.
XIONG X X, LIU Q C, SHEN Y J, et al. Study on risk model of highway traffic accidents based on LSTM-BF[J], China Safety Science Journal, 2022, 32(5): 170-176. (in Chinese)
|
[19] |
陈华伟, 邵毅明, 敖谷昌, 等. 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21(4): 183-196.
CHEN H W, SHAO Y M, AO G C, at al. Speed prediction by online map-based GCN-LSTM neural network[J], Journal of Traffic and Transportation Engineering, 2021, 21(4): 183-196. (in Chinese)
|
[20] |
HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735-1780.
|