Citation: | XIN Yi, LI Gang, DENG Youwei, ZHANG Shengpeng, ZHOU Pan, LIU Yiyang. Classifying Road Accidents and Forecasting Level of Risk Based on a Combined PCA-LPP and DBSCAN Method[J]. Journal of Transport Information and Safety, 2023, 41(4): 44-54. doi: 10.3963/j.jssn.1674-4861.2023.04.005 |
[1] |
黎健侃, 李泽炜, 华汶雯, 等. 城市道路交通事故统计分析[J]. 科技创新与应用, 2021, 11(21): 74-76. https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202121024.htm
LI J K, LI Z W, HUA W W, et al. Statistical analysis of urban traffic accidents[J]. Technology Innovation and Application, 2021, 11(21): 74-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CXYY202121024.htm
|
[2] |
林宣财, 张旭丰, 王佐, 等. 基于交通事故多发位置的区间平均纵坡控制指标研究[J]. 公路交通科技, 2021, 38(9): 105-113. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202109014.htm
LIN X C, ZHANG X F, WANG Z, et al. Study on control indicator of interval average longitudinal slope based on location of traffic accidents[J]. Journal of Highway and Transportation Research and Development, 2021, 38(9): 105-113. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK202109014.htm
|
[3] |
PANG J, KRATHAUS A, BENEDYK I, et al. A temporal instability analysis of environmental factors affecting accident occurrences during snow events: The random parameters hazard-based duration model with means and variances heterogeneity[J]. Analytic Methods in Accident Research, 2022, 34: 100215. doi: 10.1016/j.amar.2022.100215
|
[4] |
陈昭明, 徐文远. 基于负二项分布的高速公路交通事故影响因素分析[J]. 交通信息与安全, 2022, 40(1): 28-35. doi: 10.3963/j.jssn.1674-4861.2022.01.004
CHEN Z M, XU W Y, An analysis of factors influencing freeway crashes with a negative binomial model[J]. Journal of Transport Information and Safety, 2022, 40(1): 28-35. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.004
|
[5] |
吴仁彪, 何宇翔, 贾云飞. 基于改进层次分析法的重点人员风险评价方法[J]. 中国安全科学学报, 2021, 31(10): 112-118. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202110020.htm
WU R B, HE Y X, JIA Y F. Key personnel risk assessment method based on improved AHP[J]. China Safety Science Journal, 2021, 31(10): 112-118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202110020.htm
|
[6] |
AIASH A, ROBUSTE F. Traffic accident severity analysis in Barcelona using a binary probit and CHAID tree[J]. International Journal of Injury Control and Safety Promotion, 2022, 29(2): 256-264. doi: 10.1080/17457300.2021.1998136
|
[7] |
LI W, ZHAO X, LIU S. Traffic accident prediction based on multivariable grey model[J]. Information, 2020, 11(4): 184-196. doi: 10.3390/info11040184
|
[8] |
HUSSAIN F, LI Y, ARUN A, et al. A hybrid modelling framework of machine learning and extreme value theory for crash risk estimation using traffic conflicts[J]. Analytic Methods in Accident Research, 2022, 36: 2213-6657.
|
[9] |
GILANI V N M, HOSSEINIAN S M, GHASEDI M, et al. Data-driven urban traffic accident analysis and prediction using logit and machine learning-based pattern recognition models[J]. Mathematical Problems in Engineering, 2021, 2021(10): 1-11.
|
[10] |
张洁, 张萌萌, 李虹燕. 基于二元Logistic模型的城市道路交通事故严重程度分析[J]. 交通信息与安全, 2022, 40 (5): 70-79. doi: 10.3963/j.jssn.1674-4861.2022.05.008
ZHANG J, ZHANG M M, LI H Y, An analysis of severity of traffic accidents on urban roadways based on binary logistic models[J]. Journal of Transport Information and Safety, 2022, 40(5): 70-79. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.05.008
|
[11] |
MOUSAVIAN ANARAKI S A, HAERI A, MOSLEHI F. A hybrid reciprocal model of PCA and K-means with an innovative approach of considering sub-datasets for the improvement of K-means initialization and step-by-step labeling to create clusters with high interpretability[J]. Pattern Analysis and Applications, 2021, 24(3): 1387-1402.
|
[12] |
张志恒, 李超. 基于PCA-BP神经网络的审计风险识别研究[J]. 重庆理工大学学报(自然科学), 2021, 35(5): 253-261. https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202105033.htm
ZHANG Z H, LI C. The research of audit risk identification based on PCA and BP neural network[J]. Journal of Chongqing University of Technology(Natural Science), 2021, 35 (5): 253-261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CGGL202105033.htm
|
[13] |
ISLAM M R, JENNY I J, NAYON M, et al. Clustering algorithms to analyze the road traffic crashes[C]. International Conference on Science & Contemporary Technologies(ICSCT), University of Da Nang, Vietnam: IEEE, 2021.
|
[14] |
PEIXOTO M L M, MAIA A H O, MOTA E, et al. A traffic data clustering framework based on fog computing for VANETs[J]. Vehicular Communications, 2021, 2021(31): 100370.
|
[15] |
BANDYOPADHYAY S, THAKUR S S, MANDAL J K. Product recommendation for e-commerce business by applying principal component analysis(PCA)and K-means clustering: benefit for the society[J]. Innovations in Systems and Software Engineering, 2020, 17(1): 45-52.
|
[16] |
MAHA A R, LOAY E G. Stamps extraction using local adaptive K-means and ISODATA algorithms[J]. Indonesian Journal of Electrical Engineering and Computer Science, 2021, 21(1)137-145.
|
[17] |
赵莉, 候兴哲, 胡君, 等, 基于改进K-means算法的海量智能用电数据分析[J]. 电网技术, 2014, 38(10): 2715-2720. https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201410015.htm
ZHAO L, HOU X Z, HU J, et al. Improved K-means algorithm based analysis on massive data of intelligent power utilization[J]. Power System Technology, 2014, 38(10): 2715-2720. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DWJS201410015.htm
|
[18] |
LU X, LONG J, WEN J, et al. Locality preserving projection with symmetric graph embedding for unsupervised dimensionality reduction[J/OL]. (2022-06)[2023-09-15].
|
[19] |
CHEN Y, XIAO X, HUA Z, et al. Adaptive transition probability matrix learning for multiview spectral clustering[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(9): 4712-4726.
|
[20] |
李文杰, 闫世强, 蒋莹, 等. 自适应确定DBSCAN算法参数的算法研究[J]. 计算机工程与应用, 2019, 55(5): 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201905002.htm
LI W J, YAN S Q, JIANG Y, et al. Research on method of self-adaptive determination of DBSCAN algorithm parameters[J]. Computer Engineering and Applications, 2019, 55 (5): 1-7. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG201905002.htm
|
[21] |
SALIH HASAN B M, ABDULAZEEZ A M. A Review of principal component analysis algorithm for dimensionality reduction[J]. Journal of Soft Computing and Data Mining, 2021, 2(1): 20-30.
|