Citation: | GUO Xiaohan, PENG Liqun, MA Dinghui. A Method of Identifying Collision Risk of Container Trucks in Port Terminal Areas under an Integrated Connected Vehicle BSM and Roadside Video Surveillance Data[J]. Journal of Transport Information and Safety, 2023, 41(1): 1-12. doi: 10.3963/j.jssn.1674-4861.2023.01.001 |
[1] |
FLAH A, MAHMOUDI C. Design and analysis of a novel power management approach, applied on a connected vehicle as V2V, V2B/I, and V2N[J]. International Journal of Energy Research, 2019, 43(13): 6869-6889.
|
[2] |
SUN S, HU J, LI J, et al. An INS-UWB based collision avoidance system for AGV[J]. Algorithms, 2019, 12(2): 40-50. doi: 10.3390/a12020040
|
[3] |
WANG T, TONG C, XU B. AGV navigation analysis based on multi-sensor data fusion[J]. Multimedia Tools and Applications, 2020(79): 5109-5124.
|
[4] |
谢永良, 尹建军, 余承超, 等. 轮式AGV沿葡萄园垄道行驶避障导航算法与模拟试验[J]. 农业机械学报, 2018, 49(7): 13-22.
XIE Y L, YIN J J, YU C C, et al. Obstacle avoidance navigation algorithm and analog experiment for wheeled AGV running along vineyard road[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 13-22. (in Chinese)
|
[5] |
裴珮, 卫泽坤. 自动化集装箱码头AGV防撞技术[J]. 港口装卸, 2019(1): 16-17, 63. doi: 10.3963/j.issn.1000-8969.2019.01.005
PEI P, WEI Z K. AGV anti-collision technology of automated container terminal[J]. Port Operation, 2019(1): 16-17, 63. (in Chinese) doi: 10.3963/j.issn.1000-8969.2019.01.005
|
[6] |
丁一, 袁浩, 方怀瑾, 等. 考虑冲突规避的自动化集装箱码头AGV优化调度方法[J]. 交通信息与安全, 2022, 40(3): 96-107. doi: 10.3963/j.jssn.1674-4861.2022.03.010
DING Y, YUAN H, FANG H J, et al. An optimal scheduling method of AGVs at automated container terminal considering conflict avoidance[J]. Journal of Transport Information and Safety, 2022, 40(3): 96-107. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.03.010
|
[7] |
CAO X, ZHU M. Research on global optimization method for multiple AGV collision avoidance in hybrid path[J]. Optimal Control Applications and Methods, 2021, 42(4): 1064-1080. doi: 10.1002/oca.2716
|
[8] |
YANG Q, LIAN Y, XIE W. Hierarchical planning for multiple AGVs in warehouse based on global vision[J]. Simulation Modelling Practice and Theory, 2020(104): 102124.
|
[9] |
张素云, 杨勇生, 梁承姬, 等. 自动化码头多AGV路径冲突的优化控制研究[J]. 交通运输系统工程与信息, 2017, 17 (2): 83-89.
ZHANG S Y, YANG Y S, LIANG C J, et al. Optimal control of multiple AGV path conflict in automated terminals[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 83-89. (in Chinese)
|
[10] |
杨雅洁, 苌道方, 余芳. 考虑AGV避碰的自动化码头多资源协同调度[J]. 计算机工程与应用, 2020, 56(6): 246-253.
YANG Y J, CHANG D F, YU F. Multi - resource coordinated scheduling of automated terminals considering AGV collision avoidance[J]. Computer Engineering and Applications, 2020, 56(6): 246-253. (in Chinese)
|
[11] |
AL-QASSAB H, PANG S, AL-QIZWINI M, et al. Active safety system for connected vehicles[J]. SAE International Journal of Connected and Automated Vehicles, 2019, 2(3): 191-200.
|
[12] |
柳涵, 黄妙华. 基于路侧单元视觉辅助的远程驾驶主动安全预警[J]. 重庆理工大学学报(自然科学), 2021, 35(7): 37-44.
LIU H, HUANG M H. Remote driving active safety warning based on roadside unit vision assistance[J]. Journal of Chongqing University of Technology (Natural Science), 2021, 35(7): 37-44. (in Chinese)
|
[13] |
李祎承, 胡钊政, 胡月志, 等. 基于GPS与图像融合的智能车辆高精度定位算法[J]. 交通运输系统工程与信息, 2017, 17(3): 112-119.
LI Y C, HU Z Z, HU Y Z, et al. Accurate localization based on GPS and image fusion for intelligent vehicles[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 112-119(. in Chinese)
|
[14] |
ZHANG K J, WANG C, YU X Y, et al. Research on mine vehicle tracking and detection technology based on YOLOv5[J]. Systems Science & Control Engineering, 2022, 10 (1): 347-366.
|
[15] |
CEBE M, ERDIN E, AKKAYA K, et al. Block4forensic: An integrated lightweight blockchain framework for forensics applications of connected vehicles[J]. IEEE communications magazine, 2018, 56(10): 50-57.
|
[16] |
LI Y, WU D, LEE J, et al. Analysis of the transition condition of rear-end collisions using time-to-collision index and vehicle trajectory data[J]. Accident Analysis & Prevention, 2020(144): 105676.
|
[17] |
MUTHALAGU R, BOLIMERA A, KALAICHELVI V. Lane detection technique based on perspective transformation and histogram analysis for self-driving cars[J]. Computers & Electrical Engineering, 2020(85): 106653.
|
[18] |
ISLAM M, RAHMAN M, CHOWDHURY M, et al. Vision-based personal safety messages(PSMs)generation for connected vehicles[J]. IEEE Transactions on Vehicular Technology, 2020, 69(9): 9402-9416.
|
[19] |
ZENG S, WANG X, DUAN X, et al. Kernelized mahalanobis distance for fuzzy clustering[J]. IEEE Transactions on Fuzzy Systems, 2020, 29(10): 3103-3117.
|
[20] |
PENG X, MURPHEY Y L, LIU R, et al. Driving maneuver early detection via sequence learning from vehicle signals and video images[J]. Pattern Recognition, 2020(103): 107276.
|
[21] |
BENTO L C, BONNIFAIT P, NUNES U J. Cooperative GNSS positioning aided by road-features measurements[J]. Transportation Research Part C: Emerging Technologies, 2017(79): 42-57.
|
[22] |
ZHAO X, JING S, HUI F, et al. DSRC-based rear-end collision warning system-An error-component safety distance model and field test[J]. Transportation Research Part C: Emerging Technologies, 2019(107): 92-104.
|
[23] |
XIE K, YANG D, OZBAY K, et al. Use of real-world connected vehicle data in identifying high-risk locations based on a new surrogate safety measure[J]. Accident Analysis & Prevention, 2019(125): 311-319.
|
[24] |
谢济铭, 秦雅琴, 彭博, 等. 多车道交织区车辆跟驰行为风险判别与冲突预测[J]. 交通运输系统工程与信息, 2021, 21 (3): 131-139.
XIE J M, QIN Y Q, PENG B, et al. Risk discrimination and conflict prediction of vehicle-following behavior in multi-lane weaving sections[J] Journal of Transportation Systems Engineering and Information Technology, 2021, 21(3): 131-139. (in Chinese)
|