Volume 40 Issue 4
Aug.  2022
Turn off MathJax
Article Contents
WANG Lili, YANG Jie. A Collision Risk Model for Small UAVs Based on Velocity Random Distribution in Low-altitude Airspace[J]. Journal of Transport Information and Safety, 2022, 40(4): 64-70. doi: 10.3963/j.jssn.1674-4861.2022.04.007
Citation: WANG Lili, YANG Jie. A Collision Risk Model for Small UAVs Based on Velocity Random Distribution in Low-altitude Airspace[J]. Journal of Transport Information and Safety, 2022, 40(4): 64-70. doi: 10.3963/j.jssn.1674-4861.2022.04.007

A Collision Risk Model for Small UAVs Based on Velocity Random Distribution in Low-altitude Airspace

doi: 10.3963/j.jssn.1674-4861.2022.04.007
  • Received Date: 2022-01-04
    Available Online: 2022-09-17
  • Collision risk is a key indicator to evaluate the safety of aircraft and the main factor to determine the aircraft's operating conditions in the airspace. To handle the potential conflict due to the increasing number of small Unmanned Aerial Vehicles (UAVs) in low-altitude airspace, a novel collision risk model based on velocity random distribution is developed to determine the safe operating conditions of UAVs in low-altitude airspaces. New collision templates for UAVs are proposed, incorporating the maneuverability and flexibility of small UAVs. For a free-flying UAV, a double-layer sphere collision template is developed, including a collision layer and an avoidance layer. For a UAV following a fixed path, a cuboid collision template is proposed, incorporating the fuselage size of the UAV. Considering the rapid change of course and speed of the UAV, a stochastic velocity model is adopted instead of a linear model, and the relative velocity between UAVs is calculated, which is used to determine the space swept by the collision template. Considering positioning errors and speed errors of UAVs, the collision risk model based on velocity random distribution is proposed for UAVs in low-altitude airspace. Two types of UAVs, DJI M300 and M600, are selected as verification models. The Matlab software is used to simulate specific airspace scenarios. Then the relationships between collision risk and the density of small UAVs are analyzed. The simulations show that the collision risk in the airspace is positively correlated with the density of UAVs. According to the safety standards from the International Civil Aviation Organization, the maximum densities for the safe operation of the two types of verification models are 4.2 aircraft/km3 and 5.0 aircraft/km3, respectively. Under the premise of satisfying the safe conditions, the proposed model can increase the upper limit of the density of the two types of UAVs in the airspace by 106.9% and 88.7%, respectively. The results reveal that the proposed model is more consistent with the operating characteristics of UAVs. It can be used to improve the utilization of airspace, increase the capacity of UAVs in the airspace, and improve their operational efficiency in the future.

     

  • loading
  • [1]
    王智显, 张雁平, 詹雨飞. 面向低慢小无人机的SKDC-LDS技术[J]. 电子信息对抗技术, 2021, 36(3): 72-76+104. doi: 10.3969/j.issn.1674-2230.2021.03.015

    WANG Z X, ZHANG Y P, ZHAN Y F. The soft-kill distributed coordination layer defense system technology for the low-slow-small drone[J]. Electronic Information Warfare Technology, 2021, 36(3): 72-76+104. (in Chiness) doi: 10.3969/j.issn.1674-2230.2021.03.015
    [2]
    DURRANT H, ROY N, ABBEEL P. Unmanned aircraft collision avoidance using continuous-state POMDPs[C]. Robotics: Science and Systems VⅡ, Los Angeles, CA, USA: University of Southern California, 2011.
    [3]
    TYAGI A, ZHANG Y, TOUSSAINT S, et al. Strategies to model system risk using UAS safety analysis model (USAM)[C]. 16th AIAA Aviation Technology, Integration, and Operations Conference, Dallas, TX, USA: AIAA, 2015.
    [4]
    LANCOVS D, DMITRIJS H. Building, verifying and validating a collision avoidance model for unmanned aerial vehicles[J]. Procedia Engineering, 2017, 178(5): 155-161. http://www.sciencedirect.com/science/article/pii/S1877705817300826
    [5]
    ZHANG Z Y, ZHANG J, WANG P, et al. Research on operation of UAVs in non-isolated airspace[J]. Computers, Materials & Continua, 2018, 57(1): 151-166. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112535702.html
    [6]
    GAN X, WU Y, LIU P, et al. Dynamic collision avoidance zone modeling method based on UAV emergency collision avoidance trajectory[C]. 2020 IEEE International Conference on Artificial Intelligence and Information Systems(ICAⅡS), Fukuoka, Japan: IEEE, 2020.
    [7]
    刘畅, 王宏伦, 姚鹏, 等. 面向空中威胁的无人机动态碰撞区建模与分析[J]. 北京航空航天大学学报, 2015, 41(7): 1231-1238. https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201507012.htm

    LIU C, WANG H L, YAO P, et al. Modeling and analysis of dynamic collision region for UAV avoiding aerial intruders[J]. Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7): 1231-1238. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK201507012.htm
    [8]
    高俊杰. 无人机安全飞行风险评估研究[D]. 四川广汉: 中国民用航空飞行学院, 2018.

    GAO J J. Safety flight risk assessment study of unmanned aircraft[D]. Guanghan, Sichuan: Civil Aviation Flight University of China, 2018. (in Chiness)
    [9]
    贺强, 徐艺, 马尧. 基于FCM的无人机飞行安全风险评估[J]. 民航学报, 2018, 2(1): 31-34+21. https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE201801009.htm

    HE Q, XU Y, MA Y. UAS flight safety risk assessment based on fuzzy cognitive maps[J]. Journal Of Civil Aviation, 2018, 2 (1): 31-34+21. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-MHXE201801009.htm
    [10]
    杨新湦, 任治. 基于尾涡强度的无人机与民机纵向安全间隔评估研究[J]. 中国安全生产科学技术, 2018, 14(10): 64-69. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201810010.htm

    YANG X S, REN Z. Research on assessment of longitudinal safety separation between UAV and civil aircraft based on trailing vortex intensity[J]. Journal of Safety Science and Technology, 2018, 14(10): 64-69. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK201810010.htm
    [11]
    邓力. 无人机与民航客机碰撞概率研究[J]. 南京理工大学学报, 2019, 43(1): 122-128. https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201901017.htm

    DENG L. Research of collision probability of unmanned aerial vehicles and civil airplane[J]. Journal of Nanjing University of Science and Technology, 2019, 43(1): 122-128. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-NJLG201901017.htm
    [12]
    潘卫军, 陈佳炀, 张智巍, 等. 管制空域内无人机与有人机侧向碰撞风险研究[J]. 计算机与现代化, 2020(3): 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202003003.htm

    PAN W J, CHEN J Y, ZHANG Z W, et al. Lateral collision risk evaluation between unmanned aerial vehicle and manned aircraft in controlled airspace[J]. Computer and Modernization. 2020(3): 1-5. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-JYXH202003003.htm
    [13]
    赵建华, 王华伟, 严晓婧, 等. 无人机与运输类飞机碰撞风险研究[J]. 舰船电子工程, 2021, 41(1): 26-29+76. doi: 10.3969/j.issn.1672-9730.2021.01.007

    ZHAO J H, WANG H W, YAN X J, et al. Research on collision risk between drones and transport aircraft[J]. Ship Electronic Engineering 2021, 41(1): 26-29+76. (in Chiness) doi: 10.3969/j.issn.1672-9730.2021.01.007
    [14]
    王莉莉, 阳杰. 基于位置误差概率模型的物流无人机安全间隔评估方法研究[J]. 中国安全生产科学技术, 2022, 18 (3): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203028.htm

    WANG L L, YANG J. Research on assessment method of safety separation for logistics UAVs based on position error probability model[J]. Journal of Safety Science and Technology, 2022, 18(3): 184-192. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-LDBK202203028.htm
    [15]
    高扬, 刘单单. 低空开放后终端区航空器碰撞风险模型研究[J]. 中国安全科学报, 2014, 24(6): 141-145. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201406024.htm

    GAO Y, LIU D D. Research on model for aircrafts collision risk in terminal area after low altitude open[J]. China Safety Science Journla, 2014, 24(6): 141-145. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201406024.htm
    [16]
    赵建华. 考虑无人机运行的航空安全风险分析研究[D]. 南京: 南京航空航天大学, 2020.

    ZHAO J H. Risk analysis of aviation safety considering UAV operation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. (in Chiness)
    [17]
    姜黎黎, 王保国, 刘淑艳, 等. 人的可靠性研究中的定量分析方法及其评价[C]. 人-机-环境系统工程研究进展. 北京: 中国系统工程学会, 2005.

    JIANG L L, WANG B G, LIU S Y, et al. Quantitative analysis method and its evaluation in human reliability research[C]. Progress in Human-Machine-Environmental Systems Engineering, Beijing: Systems Engineering Society of China, 2005. (in Chiness)
    [18]
    钟若嵋, 文小航, 徐晨晨. 基于高分辨率模式的京津冀地区无人机航路风向风速模拟分析[J]. 地理科学进展, 2021, 40 (9): 1528-1539. https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202109009.htm

    ZHONG R M, WEN X H, XU C C. Simulation and analysis of wind speed and direction of unmanned aerial vehicle route in the Beijing-Tianjin-Hebei region based on high resolution model[J]. Progress in Geography, 2021, 40(9): 1528-1539. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ202109009.htm
    [19]
    张宏宏, 甘旭升, 李昂, 等. 基于速度障碍法的无人机避障与航迹恢复策略[J]. 系统工程与电子技术, 2020, 42(8): 1759-1767. https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202008017.htm

    ZHANG H H, GAN X S, LI A, et al. UAV obstacle avoidance and track recover strategy based on velocity obstacle method[J]. Systems Engineering and Electronics, 2020, 42 (8): 1759-1767. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-XTYD202008017.htm
    [20]
    史校川, 金镭, 王春生, 等. 美国军民用无人机系统事故案例分析[J]. 航空标准化与质量, 2017(3): 46-49. https://www.cnki.com.cn/Article/CJFDTOTAL-HKBZ201703012.htm

    SHI X C, JIN L, WANG C S, et al. A case study of the accidents of UAVs used by The United States[J]. Aeronautic Standardization & Quality, 2017(3): 46-49. (in Chiness) https://www.cnki.com.cn/Article/CJFDTOTAL-HKBZ201703012.htm
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (1040) PDF downloads(675) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return