Normally,the right-turning movement of vehicles at signalized intersections is not controlled.Thus, there are potential risks of conflicts between the right-turning vehicles and cross-walking pedestrians.Current studies ad-dressed on the identification and classification of such conflicts,no theoretical model is proposed to analyze such processes of conflicts.With the purpose to reduce conflicts and improve safety of pedestrians,a new simulation model to describe the conflict processes between right-turning vehicles and cross-walking pedestrians is proposed in this study.The decision-making process of right-turning vehicles is studied.Then the mechanism of conflicts between vehicles and pedestrians is analyzed.Finally,a vehicle-pedestrian conflict model is established.Meanwhile,the coefficients for this model are calibra-ted using actual data including vehicle speed and gap acceptance.A simulation study is then conducted to optimize the measurements for safety evaluation:time-to-collision (TTC),post-encroachment time (PET),safety braking decelera-tion,and gap time.The results reveal that PET is the most significant measurement to evaluate vehicle-pedestrian con-flict.The accuracy analysis results show that the deviation of vehicle speed and PET between simulation and actual data is less than 5%,which indicates the validity of this model.An implementation of sensitivity analysis shows that PET of small size intersections increases 10% compared with large size of intersections,which indicates that small intersections have the advantage to reduce the severity of conflicts.