An Analysis of Influencing Factors of Multi-vehicle Rear-end Accidents Based on Accident Classification of SVM
-
摘要: 以美国公路2013—2015年所有的追尾事故数据为样本,研究导致连环追尾事故发生的关键影响因素.通过随机森林进行特征筛选,选取了与时间、驾驶人、车辆、道路和环境有关的14个相关因素作为支持向量机的输入变量,建立了基于SVM的2车追尾事故与连环追尾事故二分类模型.得到分类准确率:训练集为97.42%,测试集为80.32%,AUC为0.7,说明2种事故之间存在显著差异,且SVM模型能够较好的将2种事故进行区分.根据SVM-RFE算法计算影响分类效果的特征变量的相对重要度,得到4个对2种事故产生区别影响较大的因素,依次为:碰撞前首车的运动情况、道路的限速、季节和车道数.进一步对比各因素下2种事故发生的百分比发现,在首车停车或减速、道路限速超过80 km/h、夏季以及车道数大于2车道的情况下,更容易发生连环追尾事故.
点击查看大图
计量
- 文章访问数: 569
- HTML全文浏览量: 100
- PDF下载量: 4
- 被引次数: 0