Modelling on the Risk Dynamic Evolution of Urban Rail Transit Operation Emergency
-
摘要: 为了分析城市轨道交通运营突发事件的动态演化特征,探究影响城市轨道交通正常运营的风险致因,研究了城市轨道交通运营突发事件风险动态演化模型。采用bow-tie模型将运营突发事件的风险致因、预估时间裕度和事件严重程度有机组合,构建了风险动态模态,能够反映不同时刻城市轨道交通系统运营的风险状态。基于复杂网络模型,引入连边权重和结构洞理论改进节点的度分布,提出风险动态演化模型,表征风险动态模态及其演化过程。依托北京市轨道交通运营突发事件数据,探究运营突发事件的演化规律和重要风险致因。结果表明:北京市城市轨道交通运营突发事件网络的风险动态演化模型属于无标度网络,19.90%的风险动态模态承担了整个系统77.76%的动态演化过程;风险动态演化模型具有鲁棒且脆弱性,“较严重”“严重”模态对应的风险致因分别为“列车兑现率”“正点率”,这些风险致因给系统的动态演化造成了严重后果。因此,需要重点关注可能带来严重后果的风险致因,并根据系统的动态演化特征开展精准化的风险防控与韧性提升工作。Abstract: In order to analyze the dynamic evolution characteristics of urban rail transit operation emergencies, and to explore risk factors affecting normal operations, this paper investigates a dynamic evolution model for such emergencies. The bow-tie model is used to integrate the causes of operational risks, estimated time margins and the severity of the emergencies, developing a risk dynamic model which reflects the operational risk status of urban rail transit systems at different moments. Based on a complex network model, the degree distribution of nodes is improved by introducing connected edge weights and structural hole theory, leading to the development of a risk dynamic evolution model which characterizes risk dynamic modes and their evolution process. Relying on the data from Beijing urban rail transit emergency operations, the research explores the evolution patterns of operation emergencies and identifies significant risk factors. The results show that the risk dynamic evolution model for Beijing urban rail transit operation emergency network exhibits the characteristics of a scale-free network, where 19.90% of risk dynamic modes account for 77.76% of the dynamic evolution process of the whole system. The risk dynamic evolution model demonstrates both robustness and fragility, with"train fulfillment"and"punctuality"identified as risk factors for the"more severe"and"severe"modes, respectively. These few but critical risk factors have significant consequences for the dynamic evolution of the system. Therefore, it is necessary to focus on risk factors that may bring serious consequences, and carry out targeted risk prevention, control and resilience enhancement, according to the dynamic evolution characteristics of the system.
-
Key words:
- urban traffic /
- emergency /
- risk dynamic evolution model /
- bow-tie model /
- complex network /
- risk dynamic mode
-
表 1 27个风险致因描述
Table 1. 27 risk causes and their descriptions
类别 变量 名称 变量描述 列车计划 x1 实际开行列数/列 每日轨道交通实际开行列车数 完成情况 x2 列车兑现率/% 每日路网实际与计划开行列车比值 列车晚点情况 x3 正点率/% 每日路网实际开行列车正点到达比率 x4 2 min晚点列车数/列 每日路网晚点超过2 min的列车数 环境因素 x5 工作日 工作日、非工作日取值:0, 1 x6 天气 恶劣天气、非恶劣天气取值:0, 1 x7 线路 该线路是否发生突发事件取值:0, 1 路网客流情况 x8 日路网客运量/(万人·次) 每日轨道交通路网客运量 x9 1号线断面满载率/% 每日高峰时段各条线路断面满载率平均值 x10 ~ x26 x27 机场线断面满载率/% 表 2 突发事件严重程度等级取值表
Table 2. Severity levels of emergencies
严重程度等级 严重程度取值 特别严重(Extremely High,EH) 10 严重(High,H) 5 较严重(Medium,M) 2 不严重(Low,L) 1 表 3 某日路网及各线路人员伤亡、列车调整及列车延误情况
Table 3. Casualties, train adjustments and delays to the network and lines on a given day
运营企业及线路 人员伤亡 列车调整 列车延误 人数/人 停运/列 通过/列 清人/列 掉线/列 中折/列 5 min及以上延误事件/次 北京地铁 1号线 2号线 1 5号线 1 2 1 6号线 7 1 6 6 7号线 8号线 9号线 10号线 2 2 1 13号线 15号线 昌平线 房山线 亦庄线 八通线 机场线 S1线 小计 1 8 1 8 4 6 2 京港地铁 4-大兴线 14号线(西段) 14号线(东段) 16号线(北段) 小计 0 0 0 0 0 0 0 路网 1 8 1 8 4 6 2 表 4 重要风险动态模态统计分析(前80个)
Table 4. Statistical analysis of important RDM (Top 80)
风险动态模态 节点强度 演化概率/% 风险动态模态 节点强度 演化概率/% M={x8, L2, C1} 83 11.46 M={x6, L1, C1} 3 0.41 M={x3, L3, C1} 51 7.04 M={x13, L2, C1} 3 0.41 M={x10, L4, C1} 36 4.97 M={x16, L3, C1} 3 0.41 M={x12, L4, C1} 34 4.70 M={x2, L2, C2} 3 0.41 M={x28, L1, C1} 33 4.56 M={x12, L1, C1} 3 0.41 M={x13, L5, C1} 29 4.01 M={x11, L1, C1} 3 0.41 M={x14, L5, C1} 25 3.45 M={x4, L2, C1} 3 0.41 M={x2, L3, C1} 24 3.31 M={x6, L2, C1} 3 0.41 M={x11, L2, C1} 24 3.31 M={x10, L4, C1} 3 0.41 M={x17, L4, C1} 13 1.80 M={x10, L2, C2} 3 0.41 M={x20, L1, C1} 13 1.80 M={x26, L4, C1} 3 0.41 M={x20, L3, C1} 13 1.80 M={x21, L4, C1} 3 0.41 M={x5, L2, C1} 12 1.66 M={x5, L4, C1} 2 0.28 M={x6, L1, C1} 11 1.52 M={x12, L5, C1} 2 0.28 M={x1, L1, C1} 11 1.52 M={x6, L3, C1} 2 0.28 M={x5, L3, C1} 10 1.38 M={x15, L3, C1} 2 0.28 M={x10, L5, C1} 9 1.24 M={x18, L3, C1} 2 0.28 M={x16, L4, C1} 9 1.24 M={x5, L5, C2} 2 0.28 M={x10, L3, C1} 9 1.24 M={x10, L1, C1} 2 0.28 M={x10, L2, C1} 8 1.10 M={x24, L5, C1} 2 0.28 M={x4, L5, C1} 8 1.10 M={x6, L4, C1} 2 0.28 M={x9, L1, C1} 7 0.97 M={x7, L1, C2} 2 0.28 M={x7, L5, C1} 7 0.97 M={x20, L4, C1} 2 0.28 M={x2, L1, C1} 7 0.97 M={x13, L5, C2} 2 0.28 M={x4, L3, C1} 6 0.83 M={x18, L5, C1} 2 0.28 M={x1, L2, C1} 6 0.83 M={x9, L3, C1} 2 0.28 M={x12, L3, C2} 6 0.83 M={x18, L1, C1} 2 0.28 M={x5, L1, C1} 6 0.83 M={x1, L1, C2} 2 0.28 M={x5, L5, C1} 6 0.83 M={x14, L2, C1} 2 0.28 M={x20, L2, C1} 6 0.83 M={x21, L1, C1} 2 0.28 M={x1, L5, C1} 6 0.83 M={x19, L1, C2} 2 0.28 M={x3, L2, C2} 5 0.69 M={x6, L4, C1} 2 0.28 M={x7, L3, C1} 5 0.69 M={x16, L1, C1} 2 0.28 M={x7, L4, C1} 4 0.55 M={x10, L4, C2} 2 0.28 M={x20, L5, C1} 4 0.55 M={x23, L5, C2} 1 0.14 M={x17, L2, C2} 4 0.55 M={x2, L5, C1} 1 0.14 M={x5, L4, C1} 4 0.55 M={x22, L5, C2} 1 0.14 M={x3, L2, C1} 3 0.41 M={x26, L2, C1} 1 0.14 M={x3, L2, C3} 3 0.41 M={x22, L3, C1} 1 0.14 M={x8, L3, C1} 3 0.41 M={x16, L3, C1} 1 0.14 合计:节点强度和563(前40个),演化概率和77.76% 节点强度和649(前80个),演化概率和89.64% 表 5 高结构洞等级比率风险模态对应的演化路径
Table 5. Evolution path corresponding to high structural hole ratio risk mode
路径 路径信息 路径片段9~18 {x24, L3, C1}→{x24, L3, C1}→ {x7, L4, C1}→{x13, L3, C1}→ {x13, L3, C1}→{x14, L1, C1}→ {x5, L1, C1}→{x5, L4, C2}→ {x7, L5, C1}→{x7, L2, C1} 路径片段97~107 {x8, L4, C1}→{x10, L2, C2}→ {x24, L2, C1}→{x15, L5, C1}→ {x15, L5, C1}→{x12, L3, C1}→ {x17, L4, C1}→{x16, L3, C1}→ {x14, L2, C1}→{x21, L2, C2} -
[1] SHEN S L, ELBAZ K, SHABAN W M, et al. Real-time prediction of shield moving trajectory during tunnelling[J]. Acta Geotechnica, 2022, 17(4): 1533-1549. doi: 10.1007/s11440-022-01461-4 [2] YAN H, GAO C, ELZARKA H, et al. Risk assessment for construction of urban rail transit projects[J]. Safety Science, 2019, 118: 583-594. doi: 10.1016/j.ssci.2019.05.042 [3] SINGH R, DANIEL H, DANIEL J. Decomposing journey times on urban metro systems via semiparametric mixed methods[J]. Transportation Research Part C: Emerging Technologies, 2020, 114(5): 140-163. [4] 程静, 卢群, 吴同政, 等. 地铁网络级联失效恢复策略韧性评估方法[J]. 交通信息与安全, 2023, 41(4): 173-184. doi: 10.3963/j.jssn.1674-4861.2023.04.018CHENG J, LU Q, WU T Z, et al. A method for evaluating recovery strategies for cascade failures of metro networks[J]. Journal of Transport Information and Safety, 2023, 41(4): 173-184. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2023.04.018 [5] 刘朝阳, 吕永波, 刘步实, 等. 城市轨道交通运输网络级联失效抗毁性研究[J]. 交通运输系统工程与信息, 2018, 18(5): 82-87.LIU Z Y, LYU Y B, LIU B S, et al. Cascading failure resistance of urban rail transit network[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(5): 82-87. (in Chinese) [6] 胡立伟, 范仔健, 张苏航, 等. 基于复杂网络的城市交通拥塞因子风险传播机理及其应用研究[J]. 交通运输系统工程与信息, 2021, 21(2): 224-230.HU L W, FAN Z J, ZHANG S H, et al. Risk propagation mechanism and application of urban traffic congestion factors based on complex networks[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(2): 224-230. (in Chinese) [7] 赵振宁. 地铁列车牵引系统动态风险分析评估方法研究[D]. 青岛: 山东科技大学, 2019.ZHAO Z N. Research on dynamic risk analysis and evaluation method of metro train traction system[D]. Qingdao: Shandong University of Science and Technology, 2019. (in Chinese) [8] ZHOU Y, LI C, DING L, et al. Combining association rules mining with complex networks to monitor coupled risks[J]. Reliability Engineering and System Safety, 2019, 186(6), 194-208. [9] LI X, SUN C. Dynamic risk-warning of center diaphragm and bench composite method during construction[J]. Structural Durability and Health Monitoring, 2022, 16(3): 235-254. doi: 10.32604/sdhm.2022.013141 [10] OMIDVAR M, ZAREI E, RAMAVANDI B, et al. Fuzzy bow-tie analysis: concepts, review, and application[J]. Linguistic Methods Under Fuzzy Information in System Safety and Reliability Analysis, 2022, 414(3): 13-51. [11] HUGHES P, SHIPP D, FIGUERES E M, et al. From free-text to structured safety management: introduction of a semi-automated classification method of railway hazard reports to elements on a bow-tie diagram[J]. Safety Science, 2018, 110: 11-19. doi: 10.1016/j.ssci.2018.03.011 [12] LI K P, WANG S S. A network accident causation model for monitoring railway safety[J]. Safety Science, 2018, 109: 398-402. doi: 10.1016/j.ssci.2018.06.008 [13] LI Q, SONG L, LIST G F, et al. A new approach to understand metro operation safety by exploring metro operation hazard network(MOHN)[J]. Safety Science, 2017, 93: 50-61. doi: 10.1016/j.ssci.2016.10.010 [14] LU Y, LI Q, LU Y. A research on subway physical vulnerability based on network theory and FMECA[J]. Safety Science, 2015, 80: 127-134. doi: 10.1016/j.ssci.2015.07.019 [15] YANG Y, LIU Y, ZHOU M, et al. Robustness assessment of urban rail transit based on complex network theory: a case study of the Beijing Subway[J]. Safety Science, 2015, 79: 149-162. doi: 10.1016/j.ssci.2015.06.006 [16] 李萌. 基于贝叶斯与复杂网络的铁路隧道复杂系统运营期风险评估方法研究[D]. 石家庄: 石家庄铁道大学, 2020.LI M. Study on the risk assessment method of railway tunnel complex system based on bayes and complex network[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2020. (in Chinese) [17] 杨起帆. 基于复杂网络理论的地铁灾害链链式传递模型与风险分析[D]. 石家庄: 石家庄铁道大学, 2021.YANG Q F. Chain transfer model and risk analysis of metro disaster chain based on complex network theory[D]. Shijiazhuang: Shijiazhuang Tiedao University, 2021. (in Chinese) [18] YU K, WANG Y, ZHAO W. Safety evaluation system of urban traffic network based on topological genetic algorithm[J]. Journal of Intelligent and Fuzzy Systems, 2020, 38(6), 6825-6832. doi: 10.3233/JIFS-179760 [19] 中华人民共和国交通运输部. 城市轨道交通运营安全风险分级管控和隐患排查治理管理办法[R]. 北京: 中华人民共和国交通运输部, 2019.Ministry of Transport of the People's Republic of China. Urban rail transit operation safety risk hierarchical management and control and hidden danger investigation and management measures[R]. Beijing: Ministry of Transport of the People's Republic of China, 2019. (in Chinese) [20] BURT R S. Structural Holes[M]. Cambridge: Harvard University Press, 1992.