Influences of Wheel Rail Friction Coefficient on the Dynamic Response and Wheel Wear of Low Floor Light Rail
-
摘要: 为了确保低地板轻轨车辆安全且平稳地运行,以某轻轨线路为依托,利用多体动力学软件UM(Universal Mechanism)建立了低地板轻轨车辆-轨道耦合动力学模型。选用LM磨耗型车轮踏面以及R50标准钢轨,以美国六级不平顺轨道谱作为线路激扰。基于Hertz及Kalker简化理论、Archard模型,进行不同摩擦系数共5个工况下车辆动力响应以及车轮磨耗变化规律的仿真分析。在此基础上进一步分析了4个不同运行里程阶段对应共96组车轮磨耗型面下轻轨车辆安全性指标的变化规律。研究了4个不同运行里程阶段对应的不同车轮磨耗型面下车辆过曲线时安全性指标随摩擦系数的变化情况。结果表明:脱轨系数、轮轴横向力、轮轨横向力、车体横向加速度受摩擦系数的影响较为显著,而轮重减载率、车体垂向加速度对摩擦系数的改变并不敏感。车轮磨耗深度随里程和摩擦系数的增加而增大,且相同工况下独立旋转车轮的磨耗情况更加严重。在车辆运行40 000 km后,其轮轨横向力、轮轴横向力、脱轨系数整体呈现随里程增加而增大的规律,而轮重减载率基本不受运行里程的影响。在不同摩擦系数及运行里程的叠加影响下,轮轨横向力、轮轴横向力、脱轨系数的峰值出现的位置不同,而轮重减载率却始终处于较为稳定的状态。
-
关键词:
- 轨道交通 /
- 低地板轻轨 /
- 动力响应及车轮磨耗分析 /
- 车辆-轨道耦合动力学 /
- 摩擦系数
Abstract: Taking a certain light rail line as the basis, a low-floor trams vehicle-track coupled dynamic model is established utilizing the multi-body dynamics software Universal Mechanism (UM). LM wear-type treads and R50 standard rails are selected, and the US VI irregularity track spectrum is used as the line excitation. Firstly, the vehicle's dynamic response and wheel wear is studied under five different friction coefficients, based on Hertz and simplified Kalker theories, as well as the Archard model. Then, the variation patterns of safety indicators under 96 groups of wheel wear profiles, corresponding to four different running mileage stages, are further analyzed. Finally the changes of the safety indicators of the vehicle passing through curves under different wheel wear profiles at four different mileage stages with the friction coefficient are studied. The results show that the derailment coefficient, lateral wheelset force, lateral wheel-rail force and lateral car-body acceleration are significantly influenced by the friction coefficient, whereas the wheel load reduction rate and vertical car-body acceleration are not sensitive to changes in the friction coefficient. The depth of wheel wear increases with mileage and friction coefficient, and the wear situation of independently rotating wheels is more severe under the same working conditions. After the vehicle has traveled 40 000 km, the lateral wheel-rail force, lateral wheelset force and derailment coefficient generally exhibit an increasing trend with mileage, while the wheel load reduction rate remains unaffected. Under the combined effects of different friction coefficients and operating mileages, the positions of peak values of the lateral wheel-rail force, lateral wheelset force and derailment coefficient occur at different locations, while the wheel load reduction rate remains relatively stable. -
表 1 低地板列车建模主要参数
Table 1. Main parameters for modeling low floor trains
参数名称 动车 拖车 轮对质量Mw/kg 1 500 750(单个车轮) 构架质量Mf/kg 2 970 4 224 车体质量Mc/t 9 3.3 轴距/m 1.85 1.85 车辆定距/m 10.31 10.31 表 2 不同摩擦系数下各指标的峰值
Table 2. Peak values of various indicators under different friction coefficients
摩擦系数 轮轨横向力/kN 轮轴横向力/kN 脱轨系数 轮重减载率 垂向加速度/(m/s2) 横向加速度/(m/s2) 0.1 29.115 19.509 0.455 0.545 0.792 1.229 0.15 29.54 20.634 0.469 0.55 0.798 1.546 0.2 30.633 21.001 0.487 0.555 0.842 1.825 0.25 34.381 23.045 0.544 0.554 0.844 1.869 0.3 37.91 26.197 0.592 0.555 0.847 1.929 -
[1] 中国城市轨道交通协会. 城市轨道交通2019年度统计和分析报告[R]. 北京: 中国城市轨道交通协会, 2020.China Urban Rail Transit Association. Statistical and analysis report on urban rail transit in 2019[R]. Beijing: China Urban Rail Transit Association, 2020. (in Chinese) [2] 周橙, 池茂儒, 梁海啸, 等. 城市轻轨低地板列车独立轮对接触与磨耗分析[J]. 中国铁路, 2021(5): 33-38. https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202105005.htmZHOU C, CHI M R, LIANG H X, et al. Analysis on the contact and wear of independent wheelsets for low-floor trains of urban lightrail transit[J]. China Railway, 2021(5): 33-38. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TLZG202105005.htm [3] 周橙. 城市轻轨低地板列车关键动力学问题研究[D]. 成都: 西南交通大学, 2019.ZHOU C. Research on key dynamic problems of urban light rail low floor trains [D]. Chengdu: Southwest Jiaotong University, 2019. (in Chinese) [4] 王明举. 低地板轻轨车辆轮轨接触问题的研究[D]. 大连: 大连交通大学, 2008.WANG M J. Research on wheel rail contact problem of low floor light rail vehicles[D]. Dalian: Dalian Jiaotong University, 2008. (in Chinese) [5] 孙丽霞, 李晓峰, 胡晓依, 等. 高速动车组车轮磨耗对轮轨接触关系及车辆动力学性能的影响[J]. 中国铁道科学, 2020, 41(6): 117-126. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006013.htmSUN L X, LI X F, HU X Y, et al. Influence of wheel wear on wheel-rail contact relationship and vehicle dynamic performance of high-speed emu[J]. China Railway Science, 2020, 41(6): 117-126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK202006013.htm [6] LI H X, ZHU A H, MA C C, et al. Influence of wheel profile wear coupled with wheel diameter difference on the dynamic performance of subway vehicles[J]. Shock and Vibration, 2021, 2021: 1-15. [7] 戴佳宇, 李霞, 唐伟, 等. 轨底坡对轮轨接触行为及动力学性能的影响[J]. 噪声与振动控制, 2022, 42(6): 161-167. https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202206026.htmDAI J Y, LI X, TANG W, et al. Influence of rail cant on wheel-rail contact behavior and dynamic performance[J]. Noise andVibration Control, 2022, 42(6): 161-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZSZK202206026.htm [8] 李金城, 丁军君, 吴朋朋, 等. 不同模式低地板车辆动力学及车轮磨耗分析[J]. 西南交通大学学报, 2019, 54(1): 14-22. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901003.htmLI J C, DING J J, WU P P, et al. Analysis of dynamics and wheel wear of low floor vehicle based on different patterns[J]. Journal of Southwest Jiaotong University, 2019, 54(1): 14-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201901003.htm [9] 袁玄成, 王开云, 閤鑫, 等. 轨道不平顺波长和幅值对高速动车组动力学性能的影响分析[J]. 交通信息与安全, 2018, 36(2): 1-9. doi: 10.3963/j.issn.1674-4861.2018.02.001YUAN X C, WANG K Y, GE X, et al. Influences of track irregularity wavelength and amplitude on dynamic performance of high-speed emu[J]. Journal of Transport Information and Safety, 2018, 36(2): 1-9. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.02.001 [10] LI H, SUN J, ZHAO G. Research on rail wear of small radius curve in emu depot [J]. Railway Sciences, 2022, 1(1): 16-39. [11] 王卫东, 曾宇清, 于卫东, 等. 轮轨摩擦系数对车辆脱轨安全性影响的分析[C]. 转向架及动力学仿真学术会议, 成都: 中国铁道学会, 2000.WANG W D, ZENG Y Q, YU W D, et al. Analysis of the influence of wheelrail friction coefficient on the safety of vehicle derailment[C]. Academic Conference on Bogie and Dynamic Simulation. Chengdu: China Railway Society, 2000. (in Chinese) [12] 张凯琦, 朱爱华, 杨建伟, 等. 不同车轮磨耗型面的轮轨摩擦系数优化[J]. 中国科技论文, 2020, 15(6): 664-670. https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202006010.htmZHANG KQ, ZHU AH, YANG JW, et al. Optimization ofwheel rail friction coefficient based on different wheel wear profiles[J]. China Sciencepaper, 2020, 15(6): 664-670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZKZX202006010.htm [13] 肖乾, 黄碧坤, 杨逸航, 等. 摩擦系数对高速轮轨磨耗的影响研究[J]. 铁道学报, 2016, 38(4): 39-43. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201604007.htmXIAO Q, HUANG B K, YANG Y H, et al. Influence of friction coefficient on wheel rail wear of high speed rail system[J]. Journal of the China Railway Society, 2016, 38(4): 39-43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201604007.htm [14] EADIE D T, KALOUSEK J, CHIDDICK KC. The role of high positive friction(HPF)modifier in the con-trol of hort pitch corrugation and related phenomena[J]. Wear, 2002, 253(1): 185-192. [15] CUI X, HE Z, HUANG B, et al. Study on the effects of wheel-rail friction self-excited vibration and feedback vibration of corrugated irregularity on rail corrugation[J]. Wear, 2021, 477: 203854. [16] TOMEOKA M, KABE N, TANIMOTO M, et al. Friction control between wheel and rail by means of on-board lubrication[J]. Wear, 2002, 253(1): 124-129. [17] 安博洋, 马道林, 王平, 等. 函数型摩擦系数对轮轨滚动接触行为的影响分析[J]. 铁道学报, 2017, 39(7): 98-104. https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201707015.htmAN BY, MAD L, WANG P, et al. Study on influence of slip-dependent friction on wheel /rail rolling contact[J]. Journal of the China Railway Society, 2017, 39(7): 98-104. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDXB201707015.htm [18] 肖乾, 王成国, 周新建, 等. 不同摩擦系数条件下的轮轨滚动接触特性分析[J]. 中国铁道科学, 2011, 32(4): 66-71. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104013.htmXIAO Q, WANG CG, ZHOU XJ, et al. Analysisonthe characteristics ofwheel/railrolling contact under differentfriction coefficient[J]. ChinaRailwayScience, 2011, 32(4): 66-71. (inChinese https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201104013.htm [19] 蔺鹏臻, 王亚朋. 基于车-桥耦合振动的铁路钢管混凝土系杆拱桥冲击系数研究[J]. 振动与冲击, 2021, 40(6): 115-120. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106015.htmLIN P Z, WANG Y P. Impact factor calculation of railway concrete-filled steel tubular tied-arch bridges based on vehicle-bridge coupling vibration analysis[J]. Journal of Vibration and Shock, 2021, 40(6): 115-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106015.htm [20] 翟婉明. 车辆-轨道耦合动力学[M]. 4版. 北京: 科学出版社, 2015.ZHAI W M. Vehicle-track coupled dynamics [M]. 4thEd. Beijing: Science Press, 2015. (in Chinese) [21] 陈鹏. 槽型轨及普通钢轨对独立轮对轻轨车辆轮轨动力特性的影响[J]. 城市轨道交通研究, 2012, 15(2): 65-68. https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201202017.htmCHEN P. Influence of groove rail and general rail on the dynamic characteristics of light rail vehicles with independent wheelset[J]. Urban Mass Transit, 2012, 15(2): 65-68. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GDJT201202017.htm [22] 中国铁道科学研究院集团有限公司机车车辆研究所, 中国铁道科学研究院集团有限公司标准计量研究所. 机车车辆动力学性能评定及试验鉴定规范: GB/T 5599—2019[S]. 北京: 中国标准出版社, 2019.Locomotive and Rolling Stock Research Institute of China Academy of Railway Sciences Group Co., Ltd, Standard Metrology Research Institute of China Academy of Railway Sciences Group Co, Ltd. Specificationfor dynamic performance assessment and testing verification ofrolling stock: GB/T 5599—2019[S]. Beijing: China Standards Press, 2019. (in Chinese). [23] 刘瑞家. 基于UM的地铁车辆轮轨磨耗预测及其动力学性能分析[D]. 兰州: 兰州交通大学, 2021.LIU J R. Wheel-rail wear prediction and dynamic performance analysis of metro vehicles based on um [D]. Lanzhou: Lanzhou Jiaotong University, 2021. (in Chinese) [24] 林凤涛. 高速列车车轮磨耗及型面优化研究[D]. 北京: 中国铁道科学研究院, 2014.LIN F T. Research on wheel wear and profile optimization of high speed trains[D]. Beijing: China Academy of Railway Sciences, 2014. (in Chinese) [25] 牛江, 池茂儒, 李大柱, 等. 基于半赫兹接触的车轮磨耗预测分析[J]. 中国机械工程, 2023, 34(7): 859-865, 874. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202307014.htmNIU J, CHI M R, LI D Z, et al. Predictive analysis of wheel wear based on semi-hertzian contact[J]. China Mechanical Engineering, 2023, 34(7): 859-865, 874. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGJX202307014.htm [26] 吴娜, 曾京. 高速车辆轮轨接触几何关系及车轮磨耗疲劳研究[J]. 中国铁道科学, 2014, 35(4): 80-87. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201404013.htmWU N, ZENG J. Investigation into wheel-rail contact geometry relationship and wheel wear fatigue of high-speed vehicle[J]. China Railway Science, 2014, 35(4): 80-87. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTK201404013.htm