留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于集合经验模态分解降噪和优化LSTM的道路交通事故预测

刘清梅 万明 严利鑫 郭军华

刘清梅, 万明, 严利鑫, 郭军华. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002
引用本文: 刘清梅, 万明, 严利鑫, 郭军华. 基于集合经验模态分解降噪和优化LSTM的道路交通事故预测[J]. 交通信息与安全, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002
LIU Qingmei, WAN Ming, YAN Lixin, GUO Junhua. A Method for Predicting Traffic Accidents Based on an Ensemble Empirical Mode Decomposition and an Optimized LSTM Model[J]. Journal of Transport Information and Safety, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002
Citation: LIU Qingmei, WAN Ming, YAN Lixin, GUO Junhua. A Method for Predicting Traffic Accidents Based on an Ensemble Empirical Mode Decomposition and an Optimized LSTM Model[J]. Journal of Transport Information and Safety, 2023, 41(5): 12-23. doi: 10.3963/j.jssn.1674-4861.2023.05.002

基于集合经验模态分解降噪和优化LSTM的道路交通事故预测

doi: 10.3963/j.jssn.1674-4861.2023.05.002
基金项目: 

国家自然科学基金项目 52162049

赣鄱俊才支持计划-主要学科学术和技术带头人培养项目——青年人才 20232BCJ23012

江西省研究生创新专项 YC2021-S457

详细信息
    作者简介:

    刘清梅(1996—),硕士研究生. 研究方向:交通安全. E-mail: 1457141151@qq.com

    通讯作者:

    严利鑫(1988—),博士,副教授. 研究方向:智能交通等. E-mail: yanlixinits@163.com

  • 中图分类号: U491

A Method for Predicting Traffic Accidents Based on an Ensemble Empirical Mode Decomposition and an Optimized LSTM Model

  • 摘要: 道路交通事故精准预测是有效提升交通安全的重要手段,由于事故数据经常呈现非线性、波动性、无周期性等特征,现有的算法存在预测效果不佳的问题。为此本文提出基于集合经验模态分解降噪算法(ensemble empirical mode decomposition,EEMD)和优化长短时记忆神经网络(long short-term memory,LSTM)的交通事故数量预测模型。在单一模型的基础上,引入降噪算法EEMD对噪声大的交通事故时间序列进行降噪处理,利用EEMD对事故时间序列进行分解得到多个子序列和1个残差项;基于粒子群优化算法(particle swarm optimization,PSO)优化LSTM网络结构参数,并在LSTM的最优网络结构下提取数据中的时间特征信息进行预测,对各子序列及残差的预测结果求和得到最终预测结果。研究结果表明:相对于EMD-PSO-LSTM,PSO-LSTM,EEMD-LSTM,LSTM这4个模型,EEMD-PSO-LSTM的预测效果最好,其对应的预测误差ermse分别降低了8.7%、48.3%、53.1%、57.6%,误差emape分别降低了12.4%、36.9%、50.6%、61.2%。进一步研究表明,运用EEMD对数据进行降噪预处理能提高预测精度,与PSO-LSTM模型相比,EEMD-PSO-LSTM模型的误差ermse降低了60.2%,emape降低了12.4%,判定系数r2提高了0.616 5;引入PSO模型优化神经网络结构同样也能有效提升预测效果,与EEMD-LSTM模型相比,EEMD-PSO-LSTM模型的误差ermse减小了53.1%,emape降低了50.6%,判定系数r2提高了0.807 8。该研究结果能够提高交通事故预测精度,帮助相关部门有效提高道路交通安全水平。

     

  • 图  1  LSTM网络结构

    Figure  1.  LSTM network structure

    图  2  不同迭代次数下EEMD分解误差对比分析

    Figure  2.  Comparative analysis of EEMD decomposition error under different iterations

    图  3  不同白噪声比下EEMD分解误差对比分析

    Figure  3.  Comparative analysis of EEMD decomposition error under different white noise ratio

    图  4  不同白噪声组数下EEMD分解误差对比分析

    Figure  4.  Comparative analysis of EEMD decomposition error under different number of white noise

    图  5  事故预测流程图

    Figure  5.  Flow chart of accident prediction

    图  6  事故数据序列图

    Figure  6.  Sequence of accident data

    图  7  事故数据分解结果

    Figure  7.  Decomposition results of accident data

    图  8  PSO-LSTM粒子适应度变化曲线

    Figure  8.  PSO-LSTM particle fitness curve

    图  9  各子序列对应预测结果及子序列的相对误差

    Figure  9.  Prediction results of each subsequence and relative error

    图  10  不同模型对应预测结果

    Figure  10.  The prediction results of different models

    图  11  基于不同算法性能分析对比图

    Figure  11.  Comparison of performance analysis based on different algorithms

    表  1  原始事故序列描述统计分析

    Table  1.   Descriptivestatistical analysis of original accident sequences

    统计指标 数值
    数量 365
    范围 86.0
    最小值 0
    最大值 86
    均值 27.302
    方差 408.09
    偏度 0.81
    峰度 -0.161
    下载: 导出CSV

    表  2  各分量及趋势项分析结果

    Table  2.   Results of components and trend items

    分量 平均周期/d 与原序列相关系数 方差贡献率/%
    F1 3.47 0.379** 32.336
    F2 6.87 0.288** 16.411
    F3 19.16 0.280** 13.661
    F4 36.40 0.270** 12.201
    F5 52 0.374** 10.872
    F6 182 0.776** 8.531
    F7 364 0.790** 5.223
    F8 364 0.548** 0.420
    R 0.409** 0.344
    注:**表示在0.01水平上显著相关。
    下载: 导出CSV

    表  3  PSO-LSTM参数初始化

    Table  3.   Initial parameters of the PSO-LSTM model

    网络参数 初始值
    进化次数 10
    种群规模 10
    学习因子c1 1.5
    学习因子c2 1.5
    初始隐层单元数 20
    初始学习率 0.001
    时间步 10
    迭代次数 500
    下载: 导出CSV

    表  4  经PSO算法优化的LSTM模型参数

    Table  4.   LSTM model parameters optimized by PSO algorithm

    分量 学习率 隐含层
    F1 0.011 230
    F2 0.009 191
    F3 0.011 52
    F4 0.007 150
    F5 0.013 29
    F6 0.007 166
    F7 0.005 163
    F8 0.010 210
    R 0.013 251
    下载: 导出CSV

    表  5  模型预测误差对比

    Table  5.   Model prediction error comparison

    模型 ermse emape r2
    EEMD-PSO-LSTM 5.5102 0.423 4 0.739 7
    EMD-PSO-LSTM 6.033 4 0.483 4 0.7162
    PSO-LSTM 10.659 3 0.671 4 0.1232
    EEMD-LSTM 11.742 9 0.856 6 -0.068 1
    LSTM 12.983 1 1.0909 -0.307 7
    BP 13.188 4 2.071 1 -0.203 5
    AMRIA 17.415 7 2.1546 -0.232 8
    下载: 导出CSV
  • [1] PARVAREH M, KARIMIA, REZAEIS, et al. Assessment and prediction of road accident Injuries trend using timeseries models in Kurdistan[J]. Burns & Trauma, 2018, 6(1): 55-62.
    [2] HUANG T Y, WANG Y. Forecasting model of urban traffic accidents based on Grey Model-GM(1, 1)[C]. Second Workshop on Digital Media and its Application in Museum & Heritages(DMAMH 2007), Chongqing, China: IEEE, 2008.
    [3] XU CH CH, WANG W, LI Z B, et al. Using support vector machine models for crash injury severity analysis[J]. Accident Analysis & Prevention, 2012, 45 (2): 478-486.
    [4] 谢学斌, 孔令燕. 基于ARIMA和XGBoost组合模型的交通事故预测[J]. 安全与环境学报, 2021, 21 (1): 277-284.

    XIE X B, KONG L Y. On the ways to the traffic accident prediction based on the AMRIA and XGBoost combined model[J]. Journal of Safety and Environment, 2021, 21(1): 277-284. (in Chinese)
    [5] DOGRU N, SUBASI A. Traffic accident detection using random forest classifier[C]. 2018 15th Learning and Technology Conference(L&T), Jeddah, Saudi Arabia: IEEE, 2018.
    [6] 李文书, 邹涛涛, 王洪雁, 等. 基于双尺度长短期记忆网络的交通事故量预测模型[J]. 浙江大学学报(工学版), 2020, 54 (8): 1613-1619.

    LI W S, ZOU T T, WANG H Y, et al. Traffic accident quantity prediction model based on dual-scale long short-term memory network[J]. Journal of Zhejiang University(Engineering Science), 2020, 54 (8): 1613-1619. (in Chinese)
    [7] ZHENG M, LI T, ZHU R, et al. Traffic accident's severity prediction: A deep-learning approach-based CNN network[J]. IEEE Access, 2019, 7: 39897 - 39910. doi: 10.1109/ACCESS.2019.2903319
    [8] ZHANG Z H, YANG W Z, WUSHOUR S. Traffic accident prediction based on LSTM-GBRT model[J]. Journal of Control Science and Engineering, 2020, 2020 (20): 1-10.
    [9] LIN F, XU Y, YANG Y, et al. A spatial-temporal hybrid model for short-term traffic prediction[J]. Mathematical Problems in Engineering, 2019, 2019 (PT. 1): 1-12.
    [10] HUANG N E, WU Z H. Ensemble empirical mode decomposition: a noise-assisted data analysis method. Advances in Adaptive Data Analysis, 2009 (1): 1-41.
    [11] KIM N S, CHUNG K, AHN S, et al. Denoising traffic collision data using ensemble empirical mode decomposition (EEMD)and its application for constructing continuous risk profile(CRP)[J]. Accident Analysis & Prevention, 2014, 71 (1), 29-37.
    [12] 马莹莹, 靳雪振. 基于EEMD和小波阈值的短时交通流预测研究[J]. 重庆交通大学学报(自然科学版), 2022, 41 (6): 22-29.

    MA Y Y, JIN X Z. Short-term traffic flow forecast method based on EEMD-Wavelet threshold[J]. Journal of Chongqing Jiaotong University(Natural Science), 2022, 41(6): 22-29. (in Chinese)
    [13] 王盛, 杨信丰. 基于EEMD-GWO-LSSVM的公共交通短期客流预测[J]. 计算机工程与应用, 2019, 55(20): 216-221, 239.

    WANG S, YANG X F. Short-Term passenger flow forecasting of public transport based on EEMD-GWO-LSSVM[J]. Computer Engineering and Applications, 2019, 55(20): 216-221, 239. (in Chinese)
    [14] 肖进丽, 李晓磊. 基于集合经验模态分解和差分进化算法优化BP神经网络的船舶交通流预测[J]. 大连海事大学学报, 2018, 44 (2): 9-14. doi: 10.3969/j.issn.1671-7031.2018.02.003

    XIAO J L, LI X L. Vessel traffic flow prediction method based on ensemble empirical mode decomposition and back propagation neural network optimized with differential evolution algorithm[J]. Journal of Dalian Maritime University, 2018, 44 (2): 9-14. (in Chinese) doi: 10.3969/j.issn.1671-7031.2018.02.003
    [15] 殷礼胜, 唐圣期, 李胜, 等. 基于EEMD-IPSO-LSSVM的交通流组合预测模型[J]. 电子测量与仪器学报, 2019, 33 (12): 126-133.

    YIN S L, TANG S Q, LI S, et al. Combined model based on EEMD-IPSO-LSSVM for short-term flow traffic prediction[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33 (12): 126-133. (in Chinese)
    [16] 刘东辉, 肖雪, 张珏. 基于粒子群和LSTM模型的变区间短时停车需求预测方法[J]. 交通信息与安全, 2021, 39 (4): 77-83. doi: 10.3963/j.jssn.1674-4861.2021.04.010

    LIU D H, XIAO X, ZHANG J. A prediction method for short-term parking demands in variable interval based on particle swarm optimization and LSTM model[J]. Journal of Transport Information and Safety, 2021, 39(4): 77-83. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.010
    [17] 史宇辰, 晏松, 姚丹亚, 等. 基于SVM-LSTM的车辆跟驰行为识别与信息可信甄别[J]. 交通运输工程学报, 2022, 22 (3): 115-125.

    SHI Y C, YAN S, YAO D Y. SVM-LSTM-based car-following behavior recognition and information credibility discirmination[J]. Journal of Traffic and Transportation Engineering, 2022, 22 (3): 115-125. (in Chinese)
    [18] 熊晓夏, 刘擎超, 沈钰杰, 等. 基于LSTM-BF的高速公路交通事故风险模型[J]. 中国安全科学学报, 2022, 32(5): 170-176.

    XIONG X X, LIU Q C, SHEN Y J, et al. Study on risk model of highway traffic accidents based on LSTM-BF[J], China Safety Science Journal, 2022, 32(5): 170-176. (in Chinese)
    [19] 陈华伟, 邵毅明, 敖谷昌, 等. 面向在线地图的GCN-LSTM神经网络速度预测[J]. 交通运输工程学报, 2021, 21(4): 183-196.

    CHEN H W, SHAO Y M, AO G C, at al. Speed prediction by online map-based GCN-LSTM neural network[J], Journal of Traffic and Transportation Engineering, 2021, 21(4): 183-196. (in Chinese)
    [20] HOCHREITER S, SCHMIDHUBER J. Long short-term memory[J]. Neural Computation, 1997, 9 (8): 1735-1780.
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  626
  • HTML全文浏览量:  367
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-01
  • 网络出版日期:  2024-01-18

目录

    /

    返回文章
    返回