留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高速公路连续瓶颈混合交通流可变限速与换道协同控制方法

邵敬波 黄轲 张兆磊 高志波 徐琥

邵敬波, 黄轲, 张兆磊, 高志波, 徐琥. 高速公路连续瓶颈混合交通流可变限速与换道协同控制方法[J]. 交通信息与安全, 2023, 41(3): 59-68. doi: 10.3963/j.jssn.1674-4861.2023.03.007
引用本文: 邵敬波, 黄轲, 张兆磊, 高志波, 徐琥. 高速公路连续瓶颈混合交通流可变限速与换道协同控制方法[J]. 交通信息与安全, 2023, 41(3): 59-68. doi: 10.3963/j.jssn.1674-4861.2023.03.007
SHAO Jingbo, HUANG Ke, ZHANG Zhaolei, GAO Zhibo, XU Hu. A Cooperative Control Method of Variable Speed Limit and Lane Change for Mixed Traffic Flow on Continuous Bottlenecks of Freeway[J]. Journal of Transport Information and Safety, 2023, 41(3): 59-68. doi: 10.3963/j.jssn.1674-4861.2023.03.007
Citation: SHAO Jingbo, HUANG Ke, ZHANG Zhaolei, GAO Zhibo, XU Hu. A Cooperative Control Method of Variable Speed Limit and Lane Change for Mixed Traffic Flow on Continuous Bottlenecks of Freeway[J]. Journal of Transport Information and Safety, 2023, 41(3): 59-68. doi: 10.3963/j.jssn.1674-4861.2023.03.007

高速公路连续瓶颈混合交通流可变限速与换道协同控制方法

doi: 10.3963/j.jssn.1674-4861.2023.03.007
基金项目: 

国家自然科学基金项目 52172339

长沙市科技重大专项项目 kh2301004

湖南省自然科学基金青年项目 2021JJ40577

湖南省教育厅优秀青年项目 20B009

湖南省交通科技项目 202140

湖南省研究生科研创新项目 CX20220852

详细信息
    作者简介:

    邵敬波(1997—),硕士研究生. 研究方向:交通规划与管理. E-mail: jingbo_shao2020@163.com

    通讯作者:

    黄轲(1974—),博士,副教授. 研究方向:智能交通、车联网、信息管理. E-mail: huangke@wit.edu.cn

  • 中图分类号: U491.5

A Cooperative Control Method of Variable Speed Limit and Lane Change for Mixed Traffic Flow on Continuous Bottlenecks of Freeway

  • 摘要: 为缓解高速公路连续瓶颈区车辆强制换道造成的通行能力下降的问题,减轻瓶颈之间的相互干扰,提出了面向智能网联车辆(connected and automated vehicles,CAVs)与普通车辆混行情况的高速公路连续瓶颈可变限速与换道协同控制策略。对传统的细胞传输模型(cell transmission model,CTM)进行改进,使其更好地预测考虑了可变限速地混合交通流状态;基于实验模拟,得到了不同交通需求场景下合理的换道控制段长度,通过对瓶颈上游车流进行预先换道提醒,缓解因强制换道引发的通行能力下降现象,进而提高可变限速控制的效果,同时利用可变限速对高交通需求下的流量进行调控,为换道控制段内车辆能够完成预先换道提供保障;构建了连续瓶颈下协同控制框架,并以最小化总行程时间和速度差为目标,优化连续瓶颈的交通运行性能;分析了3种CAVs渗透率对协同控制的影响。结果表明:相比于无控制和可变限速控制,在协同控制下总行程时间分别降低了54.76%和33.05%,总速度差分别减少了86.84%和29.58%。此外,CAVs对协同控制性能和道路运行状况有着积极作用。当CAVs渗透率为0.5时最低限速值由渗透率为0时的30 km/h提高至60 km/h,当渗透率为1时限速值始终保持在自由流速度,随着CAVs渗透率的增加协同控制下系统的总行程时间可从239.64 h减少至158.86 h。研究可为高速路连续瓶颈和未来含CAVs的混合交通流主动管控提供参考。

     

  • 图  1  高速公路连续瓶颈示意图

    Figure  1.  Schematic diagram of continuous bottlenecks of highway

    图  2  通行能力下降基本图

    Figure  2.  Fundamental diagram of capacity drop

    图  3  高速公路细胞传输模型原理图

    Figure  3.  Diagram of highway cell transmission model

    图  4  不同交通需求下所需的换道控制长度

    Figure  4.  Lane change control length under different traffic demands

    图  5  不同情况下协同控制

    Figure  5.  Cooperative control under different conditions

    图  6  协同控制框架

    Figure  6.  Framework of cooperative control

    图  7  仿真路段示意图

    Figure  7.  Diagram of simulation section

    图  8  EGA算法优化收敛情况

    Figure  8.  Optimization process of the EGA algorithm

    图  9  CAV渗透率为0时不同控制下2个瓶颈的交通状况

    Figure  9.  Traffic conditions of two bottlenecks under different control when CAV penetration rate is 0

    图  10  CAV渗透率为0.5时不同控制下2个瓶颈的交通状况

    Figure  10.  Traffic conditions of two bottlenecks under different control when CAV penetration rate is 0.5

    图  11  CAV渗透率为1时不同控制下2个瓶颈的交通状况

    Figure  11.  Traffic conditions of two bottlenecks under different control when CAV penetration rate is 1

    图  12  不同CAV渗透率下控制段1的可变限速值变化

    Figure  12.  Variable speed limit of section 1 under different CAV penetration rates

    图  13  通行能力与渗透率关系

    Figure  13.  Relationship between capacity and penetration rates

    图  14  总行程时间与渗透率关系

    Figure  14.  Relationship between total travel time and penetration rates

    表  1  CTM基本参数值

    Table  1.   Basic parameter values of CTM

    参数 瓶颈1 瓶颈2
    自由流速度/(km/h) 110 110
    最大通行能力/(veh/h) 5 920 4 320
    下降后通行能力/(veh/h) 5 180 3 790
    冲击波波速/(km/h) 15.80 17.53
    临界密度/(veh/km) 53.82 39.27
    阻塞密度/(veh/km) 428.57 285.71
    下载: 导出CSV

    表  2  车辆运动模型基本参数

    Table  2.   Basic parameters of vehicle motion model

    参数 CAV HDV
    amax/(m/s2 2.5 2.5
    b0/m 2 2
    τh/s 0.5 1.2
    bmax/(m/s2 2 2
    bsafe/(m/s2 4.5 4.5
    L/m 5 5
    γ 4 4
    κ 0.5 0.1
    Δath/(m/s2 0.3 0.3
    下载: 导出CSV

    表  3  不同控制策略下评估结果

    Table  3.   Evaluation results under different control strategies

    控制类型 无控制 仅VSL 协同控制
    TTT/h 529.71 357.92 239.64
    TSD/(km/h) 21 921.53 4 096.67 2 884.77
    变道率/% 72.34 80.92 76.16
    平均CO2/g 960.25 751.59 646.73
    平均NOx/g 0.376 5 0.290 2 0.247 8
    平均油耗/g 0.412 8 0.323 1 0.278 1
    下载: 导出CSV
  • [1] ZHAO X, XU W, MA J, et al. Effects of connected vehicle-based variable speed limit under different foggy conditions based on simulated driving[J]. Accident Analysis & Prevention, 2019, 128: 206-216.
    [2] LYU P, LIN Y, WANG L, et al. Variable speed limit control for delay and crash reductions at freeway work zone area[J]. Journal of Transportation Engineering, Part A: Systems, 2017, 143(12): 04017062. doi: 10.1061/JTEPBS.0000099
    [3] 于德新, 刘珩, 郑黎黎, 等. 高速公路瓶颈区域可变限速控制方法[J]. 交通运输系统工程与信息, 2018, 18(3): 120-125. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803019.htm

    YU D X, LIU H, ZHENG L L, et al. Variable speed limit control method for freeway bottleneck area[J]. Journal of Transportation Systems Engineering and Information Technology, 2018, 18(3): 120-125. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201803019.htm
    [4] HAN Y, CHEN D, AHN S. Variable speed limit control at fixed freeway bottlenecks using connected vehicles[J]. Transportation Research Part B: Methodological, 2017, 98: 113-134. doi: 10.1016/j.trb.2016.12.013
    [5] PAPAGEORGIOU M, KOSMATOPOILOS E, PAPAMICHAIL I. Effects of variable speed limits on motorway traffic flow[J]. Transportation Research Record, 2008, 2047(1): 37-48. doi: 10.3141/2047-05
    [6] WANG Y, IOANNOU P A. New model for variable speed limits[J]. Transportation Research Record, 2011, 2249(1): 38-43. doi: 10.3141/2249-06
    [7] HAO W, ZHANG Z, GAO Z, et al. Research on mandatory lane-changing behavior in highway weaving sections[J]. Journal of Advanced Transportation, 2020, 2020.
    [8] 李霞, 李明烨, 张孝铭, 等. 人机混驾交通流交织区换道模型切换控制策略[J]. 交通信息与安全, 2022, 40(6): 45-52, 62. doi: 10.3963/j.jssn.1674-4861.2022.06.005

    LI X, LI M Y, ZHANG X M, et al. Switching control secision of lane-changing model in interweaving areas of mixed traffic flow with human-driving and autonomous vehicles[J]. Journal of Transport Information and Safety, 2022, 40(6): 45-52, 62. doi: 10.3963/j.jssn.1674-4861.2022.06.005
    [9] DONG C, WANG H, LI Y, et al. Route control strategies for autonomous vehicles exiting to off-ramps[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 21(7): 3104-3116.
    [10] ZHANG Y, IOANNOU P A. Combined variable speed limit and lane change control for highway traffic[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(7): 1812-1823.
    [11] 张存保, 江周, 李薇, 等. 高速公路关联施工区可变限速协调控制方法[J]. 武汉理工大学学报(交通科学与工程版), 2017, 41(6): 905-909. doi: 10.3963/j.issn.2095-3844.2017.06.003

    ZHANG C B, JIANG Z, LI W, et al. Coordinated control method of variable speed limits for correlative work zones of freeway[J]. Journal of Wuhan University of Technology (Transportation Science and Engineering Edition), 2017, 41 (6): 905-909. (in Chinese) doi: 10.3963/j.issn.2095-3844.2017.06.003
    [12] DO W, ROUHANI O M, MIRANDA-MORENO L. Simulation-based connected and automated vehicle models on highway sections: A literature review[J]. Journal of Advanced Transportation, 2019, 2019.
    [13] RIOS-TORRES J, MALIKOPOULOS A A. Impact of connected and automated vehicles on traffic flow[C]. 2017 IEEE 20th International Conference on Intelligent Transportation Systems(ITSC), Mielparque Yokohama: IEEE, 2017.
    [14] GUO Y, XU H, ZHANG Y, et al. Integrated variable speed limits and lane-changing control for freeway lane-drop bottlenecks[J]. IEEE Access, 2020(8): 54710-54721.
    [15] 孙剑, 殷炬元, 黎淘宁. 快速路入口匝道瓶颈宏观交通流模型[J]. 交通运输工程学报, 2019, 19(3): 122-133. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201903013.htm

    SUN J, YIN J Y, LI T N. Macroscopic traffic flow model of expressway on-ramp bottlenecks[J]. Journal of Traffic and Transportation Engineering, 2019, 19(3): 122-133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201903013.htm
    [16] 潘义勇, 王松. 网联自动驾驶环境下改进的加权MOBIL自主性换道决策模型[J]. 重庆交通大学学报(自然科学版), 2021, 40(5): 46-52, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202105008.htm

    PAN Y Y, WANG S. Improved weighted MOBIL decision model for autonomous lane change in networked autopilot environment[J]. Journal of Chongqing Jiaotong University(Natural Science Edition), 2021, 40(5): 46-52, 101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CQJT202105008.htm
    [17] ZHOU M, QU X, JIN S. On the impact of cooperative autonomous vehicles in improving freeway merging: A modified intelligent driver model-based approach[J]. IEEE Transactions on Intelligent Transportation Systems, 2016, 18(6): 1422-1428.
    [18] TOLEDO T, ZOHAR D. Modeling duration of lane changes[J]. Transportation Research Record, 2007, 1999(1): 71-78.
    [19] 何勇, 唐琤琤. 道路交通安全技术[M]. 北京: 人民交通出版社, 2008.

    HE Yong, TANG Cheng. Road traffic safety technology[M]. Beijing: China Communications Press, 2008.
    [20] YU M, FAN W D. Optimal variable speed limit control at a lane drop bottleneck: Genetic algorithm approach[J]. Journal of Computing in Civil Engineering, 2018, 32(6): 04018049.
  • 加载中
图(14) / 表(3)
计量
  • 文章访问数:  800
  • HTML全文浏览量:  348
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-10
  • 网络出版日期:  2023-09-16

目录

    /

    返回文章
    返回