Influence of Horizontal and Vertical Alignments of Undersea Tunnel on Driver's Visual Characteristics and Vehicle Speed
-
摘要: 海底隧道平纵线形组合方式复杂多样,容易导致驾驶人产生分心、疲劳等不良反应。为此,采集了30名驾驶人的实车数据,量化分析了海底隧道平纵线形对驾驶人视觉特征及车速的影响。运用Facelab眼动仪、GPS X10车载坡度计、行车记录仪等设备采集眨眼频率、单位时间内人眼闭合时间所占比例(percentage of eyeclosure over the pupil per unit time,PERCLOS)、隧道坡度、车速等数据。利用偏相关性分析得出海底隧道坡度、曲率与驾驶人眨眼频率、PERCLOS、车速的相关性及显著性,采用Ploy 2D非线性曲面拟合方法,分别建立眨眼频率、PERCLOS、车速与坡度-曲率的数学模型,量化分析眨眼频率、PERCLOS及车速与海底隧道平纵线形之间的关系,进而反映出海底隧道不同平纵线形组合对驾驶人的精神状态及行车状态的影响。结果表明:坡度1.3 %和圆曲线半径4 348 m的海底隧道平纵线形组合方式下,驾驶人的眨眼频率最大,精神最放松,适当增加上坡坡度值、减小圆曲线半径可以提高驾驶人的紧张感;坡度3.05 %和圆曲线半径3 521 m的海底隧道平纵线形组合方式下,驾驶人的PERCLOS最大,疲劳程度最高,适当增加下坡坡度值、减小圆曲线半径可以缓解驾驶人的疲劳;坡度1.78 %和圆曲线半径2 433 m的海底隧道平纵线形组合方式下,车速最快,适当增加上坡坡度值和圆曲线半径,可以降低车速。本文构建的视觉特征及车速模型,可以反映驾驶人的精神及行车状态随平纵线形的变化,为海底隧道平纵线形安全设计与运营管理提供理论支撑。Abstract: The combination of horizontal and vertical alignments of the undersea tunnel is complex and diverse, which can easily lead to adverse reactions such as distraction and fatigue for drivers. To this end, the data of 30 drivers are collected to quantify and analyze the effect of the cross-harbor tunnel flat and longitudinal alignment on drivers' visual characteristics and vehicle speed. The Facelab eye tracker, GPS X10 vehicle-mounted inclinometer, tachograph, and other equipment are used to collect the drivers' blink frequency, percentage of eye closure over the pupil per unit time (PERCLOS), tunnel slope, vehicle speed, and other data. The correlation and significance between the slope and curvature of the undersea tunnel and the drivers' blink frequency, PERCLOS, and vehicle speed are analyzed using partial correlation analysis. Then, Ploy 2D nonlinear surface fitting is used to establish mathematical models of blink frequency, PERCLOS, and vehicle speed with slope curvature. The relationship between blink frequency, PERCLOS, vehicle speed, and the horizontal and vertical alignments of the undersea tunnel is quantitatively analyzed, thus reflecting the influence of different combinations of horizontal and vertical alignments of the undersea tunnel on the driver's mental state and driving condition. Study results indicate that: Under the combination of a slope of 1.3% and the radius of the circular curve of 4 348 m, the drivers' blink frequency is highest, and their mental state is most relaxed. The driver's tension will be increased by appropriately increasing the positive slope and decreasing the curvature radius. Under the combination of a slope of 3.05% and the radius of the circular curve of 3 521 m, the drivers' PERCLOS is the largest and the fatigue degree is the highest. By appropriately increasing the negative slope and reducing the curvature radius the driver's tension will be relieved. Under the combination of a slope of 1.78% and the radius of the circular curve of 2 433 m, the vehicle speed is found to be the highest. The vehicle's speed will be reduced by appropriately increasing the positive slope and curvature radius. The constructed visual characteristics and speed model can reflect the changes in the driver's mental state and driving condition with the changes in horizontal and vertical alignments, which shall provide theoretical support for the horizontal and vertical alignments' safe design and operation management of the undersea tunnel.
-
表 1 胶州弯海底隧道左线平纵线形-眨眼频率偏相关性分析
Table 1. Partial correlation analysis of the horizontal and vertical alignment-blink frequency fitting model of the left line of undersea tunnel
控制变量 变量 相关性(r) 显著性(P) 曲率 下坡坡度 0.646 0.031 上坡坡度 -0.875 0.001 坡度 曲率 -0.842 < 0.001 表 2 胶州湾海底隧道左线平纵线形-眨眼频率拟合模型方差分析
Table 2. Variance analysis of the horizontal and vertical alignment-blink frequency fitting model of the left line of undersea tunnel
方差来源 平方和 均方 F值 P值 回归 71.970 11.995 2 105.274 < 0.001 残差 0.650 0.006 修正整体 2.350 表 3 胶州湾海底隧道左线平纵线形-PERCLOS偏相关性分析
Table 3. Partial correlation analysis of the horizontal and vertical alignment-PERCLOS fitting model of the left line of undersea tunnel
控制变量 变量 相关性(r) 显著性(P) 曲率 坡度 0.902 < 0.001 坡度 曲率 -0.586 0.026 表 4 胶州湾海底隧道左线平纵线形-PERCLOS拟合模型方差分析
Table 4. Variance analysis of the horizontal and vertical alignment-PERCLOS fitting model of the left line of undersea tunnel
方差来源 平方和 均方 F值 P值 回归 0.002 < 0.001 607.022 < 0.001 残差 0.001 < 0.001 修正整体 < 0.001 表 5 胶州湾海底隧道左线平纵线形-车速偏相关性分析
Table 5. Partial correlation analysis of the horizontal and vertical alignment-vehicle speed fitting model of the left line of undersea tunnel
控制变量 变量 相关性(r) 显著性(P) 曲率 下坡坡度 0.741 < 0.001 上坡坡度 -0.923 < 0.001 坡度 曲率 0.564 0.016 表 6 海底隧道左线平纵线形-车速拟合模型方差分析
Table 6. Variance analysis of the horizontal and vertical alignment-vehicle speed fitting model of the left line of undersea tunnel
方差来源 平方和 均方 F值 P值 回归 570 465.881 95 077.647 12 135.956 < 0.001 残差 893.119 7.834 修正整体 12 254.992 -
[1] 张顶立. 隧道及地下工程的基本问题及其研究进展[J]. 力学学报, 2017, 49(1): 3-21. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701002.htmZHANG D L. Essential issues and their research progress in tunnel and underground engineering[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 3-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201701002.htm [2] 潘福全, 泮海涛, 王铮, 等. 照度与纵坡耦合作用下海底隧道出入口段驾驶人视觉特征分析与建模[J]. 交通运输系统工程与信息, 2021, 21(1): 142-148. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101023.htmPAN F Q, PAN H T, WANG Z, et al. Analysis and modeling of drivers' visual characteristicsat entrance and exit of undersea tunnel withcoupling of illuminance and longitudinal slope[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(1): 142-148. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202101023.htm [3] REN Y, LI X, ZHENG X, et al. Analysis of drivers'eye-movement characteristics when driving around curves[J]. Discrete Dynamics in Nature and Society, 2015, 2015(1): 1-10. [4] YU H, WANG F, REN Y, et al. Gaze characteristics of drivers in curved sections[C]. 19th COTA International Conference of Transportation, Nanjing, China: COTA, 2019. [5] WANG S, DU Z, JIAO F, et al. Impact of urban undersea tunnel longitudinal slope on the visual characteristics of drivers[J]. Journal of Advanced Transportation, 2020(7): 1-11. [6] JIAO F, DU Z, WANG S, et al. Research on drivers' visual characteristics in different curvatures and turning conditions of the extra-long urban underwater tunnels[J]. Tunnelling and Underground Space Technology, 2020, 99(5): 103360. [7] SHAO X, CHEN F, MA X, et al. The impact of lighting and longitudinal slope on driver behaviour in underwater tunnels: A simulator study[J]. Tunnelling and Underground Space Technology, 2022, 122(4): 104367. [8] 李显生, 李明明, 任有, 等. 城市不同道路线形下的驾驶人注视特性[J]. 吉林大学学报(工学版), 2016, 46(5): 1447-1452. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201605010.htmLI X S, LI M M, REN Y, et al. Driver's fixation characteristics in different urban road alignments[J]. Journal of Jilin University(Engineering and Technology Edition), 2016, 46(5): 1447-1452. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201605010.htm [9] 高建平, 窦浩然, 何云勇, 等. 基于驾驶员人因的高速公路长大连续下坡路段线形组合设计方法[J]. 公路, 2021, 66(11): 7-13. doi: 10.12361/2661-3514-03-11-07GAO J P, DOU H R, HE Y Y, et al. Research on the alignment combination method of long downhill section in mountainous express based on driver's human factor[J]. Highway, 2021, 66(11): 7-13. (in Chinese) doi: 10.12361/2661-3514-03-11-07 [10] SCOTT C H, ERIC T D. Speed prediction models for multilane highway: Simu-ltaneous equations approach[J]. Journal of Transportation Engineering, 2010, 136 (10) : 856-862. [11] HASHIM I H, ABDEL T A, MOUSTAFA Y. Toward an operating speed profile model for rural two-lane roads in Egypt[J]. Journal of Traffic & Transportation Engineering, 2016, 3(1): 82-88. [12] BOROUJERDIAN A M, SEYEDABRISHAMI E, AKBARPOUR H. Analysis of geometric design impacts on vehicle operating speed on two-lane rural roads[J]. Procedia Engineering, 2016, 161(3): 1144-1151. [13] 吴艳霞, 刘剑, 黄帅, 等. 雨天高速公路纵坡对驾驶员心率及行车速度影响[J]. 交通信息与安全, 2021, 39(4): 35-42. doi: 10.3963/j.jssn.1674-4861.2021.04.005WU Y X, LIU J, HUANG S, et al. Influences of longitudinal slopes of highways on drivers' heart rate and driving speeds on rainy days [J]. Journal of Transport Information and Safety, 2021, 39(4): 35-42. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.04.005 [14] 徐进, 邵毅明, 赵军, 等. 山区道路弯坡组合路段重载车辆行驶速度模型[J]. 长安大学学报(自然科学版), 2015, 35(2): 67-74. https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502012.htmXU J, SHAO Y M, ZHAO J, et al. Speed perdition model of heavy truck driving on curved segment with a slope of mountains highway[J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(2): 67-74. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XAGL201502012.htm [15] 赵晓华, 鞠云杰, 李佳, 等. 基于驾驶行为和视觉特性的长大隧道突起路标作用效果评估[J]. 中国公路学报, 2020, 33(6): 29-41. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006004.htmZHAO X H, JU Y J, LI J, et al. Evaluation of the effect of RPMs in extra-long tunnels based on driving behavior and visual characteristics[J]. China Journal of Highway and Transport, 2020, 33(6): 29-41. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006004.htm [16] 王首硕, 杜志刚, 冯守中, 等. 高速公路隧道入口区域视线诱导系统有效性研究[J]. 交通运输工程学报, 2021, 21(2): 267-277. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102026.htmWANG S S, DU Z G, FENG S Z, et al. Research on effectiveness of visual guiding system in entrance zone of freeway tunnel[J]. Journal of Traffic and Transportation Engineering, 2021, 21(2): 267-277. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC202102026.htm [17] 徐萌, 潘晓东, 陈丰, 等. 彩色灯光视觉调节对长隧道驾驶催眠缓解作用的试验[J]. 中国公路学报, 2020, 33(11): 235-244. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202011022.htmXU M, PAN X D, CHEN F, et al. Experimental study on the effect of color light vision regulation on hypnotic relief of long tunnel driving[J]. China Journal of Highway and Transport, 2020, 33(11): 235-244. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202011022.htm [18] 潘福全, 李炜聪, 闫仕源, 等. 信号交叉口处公交车驾驶员视觉特性分析[J]. 交通科技与经济, 2021, 23(5): 30-37. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ202105005.htmPAN F Q, LI W C, YAN S Y, et al. Visual characteristics analysis of bus drivers at signalized intersections[J]. Technology & Economy in Areas of Communications, 2021, 23(5): 30-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ202105005.htm [19] 王鹏, 神和龙, 尹勇, 等. 基于深度学习的船舶驾驶员疲劳检测算法[J]. 交通信息与安全, 2022, 40(1): 63-71. doi: 10.3963/j.jssn.1674-4861.2022.01.008WANG P, SHEN H L, YIN Y. A detection algorithm for the fatigue of ship officers based on deep learning technique[J]. Journal of Transport Information and Safety, 2022, 40(1): 63-71. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2022.01.008 [20] 严凡. 基于云模型的驾驶疲劳检测方法[J]. 交通科技与经济, 2019, 21(3): 15-18. https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201903004.htmYAN F. Driving fatigue detection method based on cloud model[J]. Technology & Economy in Areas of Communications, 2019, 21(3): 15-18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KJJJ201903004.htm [21] 刘明周, 蒋倩男, 扈静. 基于面部几何特征及手部运动特征的驾驶员疲劳检测[J]. 机械工程学报, 2019, 55(2): 18-26. https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902003.htmLIU M Z, JIANG Q N, HU J. Based on facial geometric features and hand motion characteristics driver fatigue detection[J]. Journal of Mechanical Engineering, 2019, 55(2): 18-26. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JXXB201902003.htm [22] SUGIYANTO G, MALKHAMAH S. Determining the maximum speed limit in urban road to increase traffic safety[J]. Journal Teknologi, 2018, 80(5): 67-77. [23] 刘拥华, 姚逸豪, 孙静怡, 等. 基于实际速度运行特征的山区高速公路交通安全性分析[J]. 昆明理工大学学报(自然科学版), 2021, 46(6): 125-131, 143. https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202106015.htmLIU Y H, YAO Y H, SUN J Y, et al. Analysis of the traffic safety of mountain expressway based on the actual speed operation characteristics[J]. Journal of Kunming University of Science and Technology(Natural Sciences), 2021, 46(6): 125-131, 143. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KMLG202106015.htm [24] 焦方通, 杜志刚, 王首硕, 等. 城市水下特长隧道出入口视觉及舒适性研究[J]. 中国公路学报, 2020, 33(6): 147-156. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006015.htmJIAO F T, DU Z G, WANG S S, et al. Visual characteristics and comfort at the entrance and exit of the extra-long urban underwater tunnel[J]. China Journal of Highway and Transport, 2020, 33(6): 147-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202006015.htm