An Evaluation method for the Suitability of Three Visibility Graphs in Analyzing the Fluctuation Characteristics of Arrival Flight Flows
-
摘要: 在空域资源优化配置、运行效率提升、飞行安全保障等方面, 掌握空中交通流量波动规律发挥着先导性、基础性和关键性作用。为评估可视图、水平可视图、有限穿越可视图这3种图对航班流量波动特性及其演化的刻画能力, 针对同1个进场航班流的多尺度流量时间序列构建复杂网络, 分别从网络的整体结构和局部结构开展了适用性评估分析。针对网络整体结构特点, 提出了基于网络结构从属阵特点的网络细节损失率定义, 再通过k-core聚类分析考察了k阶核量化流量波动强度的适用性; 针对网络局部结构特点, 利用motif方法计算波动模式转移概率, 分析了不同长度序模体刻画波动演化的适应性水平。分析结果表明: ①当有限穿越可视图网络N值与节点数量占比在0.48%~1.442%区间时, N值的选择能够保证从属阵细节损失率在0.5范围内; ②可视图与有限穿越可视图(N=1~3)均能有效刻画航班流量时间序列的波动强度, 对时间序列波动的适应性评估值分别为2.665、4.810、6.973和9.883;③motifs序列长度过短, 将导致motifs类型数量少、不同motifs类型之间的转移概率趋于相同, 而在交通流混沌特性的影响下motifs序列过长对于预测没有意义, 因此, 可视图及N=1~3的有限穿越可视图motifs序列长度推荐使用选择4~7个节点长度。综上所述, 运用k-core聚类与motifs方法能有效分析整体网络与局部网络下波动模式的转移特征, 准确揭示空中交通时间维度的演变规律, 相关分析结果可以为航班延误预测提供依据, 能在航班实际运行管理中发挥先导性作用。Abstract: Understanding the fluctuation characteristics of air traffic flows plays a leading, essential, and key role in many aspects of their control and management, such as airspace configuration optimization, efficiency promotion, and safety assurance. This paper aims to evaluate the suitability of the visibility graph(VG), horizontal visibility graph(HVG), and limited penetrable visibility graph(LPVG) in analyzing the fluctuation characteristics of air traffic flows. A complex network based on the multi-scale time series data extracted from the same arrival flow is developed and the suitability of three visibility graphs is evaluated from the global and local structure perspectives. From the global perspective, a concept of details loss rate is proposed by considering the characteristics of the network structure-dependent matrix. Then a k-core cluster is used to analyze the suitability of quantifying the strength of flight flow fluctuations. From the local perspective, a transfer probability of fluctuation patterns is calculated using the sequential motifs method, and the suitability of the sequential motif with different lengths in characterizing fluctuation characteristics of flight flows is evaluated. The results show that: ①the loss rate of detail can be limited within 0.5 when the proportion of N value of the LPVG in network nodes ranges from 0.48% to 1.442%;②VG and LPVG(N=1~3) can effectively describe the intensity of fluctuation of flight flow time series data and the suitability value is 2.665, 4.810, 6.973, and 9.883, respectively; ③a long sequential motif would reduce the number of sequential motifs and result in the similarity of transition probability among different types of the sequential motifs, while a short sequential motif is useless for prediction due the chaotic characteristics of traffic flow. Thus, it is recommended to use the sequential motif with the length of 4, 5, 6, and 7 for VG and LPVG(N=1~3). In conclusion, the k-core cluster and the motifs method provide an in-depth analysis of the transfer characteristics among the fluctuation modes and the evolution of time dimension in air traffic, which offers support for delay prediction and plays a leading role in the actual operation management of flights.
-
Key words:
- flight flow /
- time series /
- fluctuation characteristic /
- visibility graph /
- network structure /
- sequential motif /
- k-core algorithm
-
表 1 3种可视图从属阵可视线比率
Table 1. Subordinate array visibility lines ratios of three visibility graphs
时间粒度/min 可视线类型 1 2 3 4 5 6 7 8 9 图密度 VG 0.276 0.253 0.342 0.533 0.304 0.573 0.213 0.143 0.600 0.038 5 LPVG(N=1) 0.456 0.447 0.537 0.867 0.520 0.702 0.406 0.280 0.800 0.071 HVG 0.047 0.059 0.068 0.200 0.064 0.058 0.036 0.025 0.200 0.006 VG 0.527 0.644 0.342 0.786 0.844 0.456 0.322 0.667 0.080 10 LPVG(N=1) 0.747 0.867 0.583 0.964 0.956 0.667 0.504 1.000 0.128 HVG 0.088 0.089 0.075 0.036 0.067 0.047 0.047 0.000 0.009 VG 0.905 0.455 0.600 0.800 0.711 0.822 0.667 0.137 20 LPVG(N=1) 1.000 0.673 0.800 1.000 0.889 0.956 1.000 0.211 HVG 0.095 0.073 0.100 0.000 0.089 0.044 0.000 0.011 表 2 不同N取值LPVG从属阵可视线比率
Table 2. Limited penetrable visibility graph subordinate array visibility lines ratios with different N values
时间粒度/min N取值 1 2 3 4 5 6 7 8 9 图密度 N=2 0.591 0.589 0.668 0.933 0.696 0.801 0.545 0.399 1.000 0.100 N=3 0.717 0.688 0.758 1.000 0.789 0.901 0.647 0.513 1.000 0.125 5 N=4 0.815 0.779 0.816 1.000 0.871 0.977 0.721 0.597 1.000 0.149 N=5 0.877 0.877 0.853 1.000 0.930 1.000 0.787 0.685 1.000 0.171 N=6 0.909 0.945 0.884 1.000 0.988 1.000 0.853 0.759 1.000 0.191 N=2 0.879 0.978 0.758 1.000 1.000 0.778 0.656 1.000 0.166 N=3 0.967 1.000 0.892 1.000 1.000 0.848 0.772 1.000 0.203 10 N=4 1.000 1.000 0.967 1.000 1.000 0.924 0.873 1.000 0.238 N=5 1.000 1.000 0.992 1.000 1.000 0.936 0.938 1.000 0.270 N=6 1.000 1.000 1.000 1.000 1.000 0.982 0.975 1.000 0.310 N=2 1.000 0.764 1.000 1.000 0.956 1.000 1.000 0.278 N=3 1.000 0.927 1.000 1.000 1.000 1.000 1.000 0.347 20 N=4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.406 N=5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.457 N=6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.516 表 3 k-core统计特性
Table 3. The statistic characteristics of k-core
可视图 特征 数值 VG
(core=8)k-core分类 2 3 4 5 6 7 8 频数 23 34 39 44 28 24 16 累积频率 11.058 27.404 46.154 67.308 80.769 92.308 100 LPVG
(core=13,N=1)k-core分类 3 4 5 6 7 8 9 10 11 12 13 频数 3 7 16 13 19 16 34 53 19 8 20 累积频率 1.442 4.808 12.5 18.75 27.885 35.577 51.923 77.404 86.539 90.385 100 LPVG
(core=17,N=2)k-core分类 4 5 6 7 8 9 10 11 12 13 14 15 16 17 频数 3 1 2 7 14 7 5 20 24 9 38 7 44 27 累积频率 1.442 1.923 2.885 6.25 12.981 16.346 18.75 28.365 39.904 44.231 62.5 65.865 87.019 100 LPVG
(core=20,N=3)k-core分类 5 6 8 9 10 11 12 13 14 15 16 17 18 19 20 频数 2 1 3 2 7 11 2 14 10 17 41 7 6 27 58 累积频率 0.962 1.442 2.885 3.846 7.212 12.500 13.462 20.192 25.000 33.173 52.885 56.250 59.135 72.115 100 表 4 序模体动态演化的统计特征
Table 4. Statistical characteristics of sequential motifs dynamic evolutions
可视图类型 窗口长度/min 序模体长度 转移次数/类型总数 序模体类型出现次数 序模体类型转移频次 μ0 σ0 μr σr VG 15 3 205/2 103.000 34.000 51.250 25.064 20 4 204/5 41.000 38.838 17.000 19.240 25 5 203/22 9.273 9.076 3.830 3.710 LPVG
(N=1)20 4 204/2 102.500 5.500 51.000 7.842 25 5 203/6 34.000 25.344 11.278 12.197 30 6 202/32 6.344 5.914 2.525 1.975 LPVG
(N=2)25 5 203/2 102.000 30.000 50.750 25.548 30 6 202/6 33.833 23.954 10.632 11.645 35 7 201/34 5.941 7.673 2.481 2.846 LPVG
(N=3)30 6 202/2 101.500 36.500 50.500 32.684 35 7 201/6 33.667 29.998 10.579 15.901 40 8 200/34 5.912 10.506 2.597 4.319 -
[1] 邢雪, 于德新, 田秀娟, 等. 结合可视图的多状态交通流时间序列特性分析[J]. 物理学报, 2017, 66(23): 57-65. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201723007.htmXING X, YU D X, TIAN X J, et al. Analysis of multi-state traffic flow time series properties using visibility graph[J]. Acta Physica Sinica, 2017, 66(23): 57-65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201723007.htm [2] LIU H Z, ZHANG X C, ZHANG X. Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case[J]. Physica A: Statistical Mechanics and its Applications, 2018, 503. [3] 周婷婷, 金宁德, 高忠科, 等. 基于有限穿越可视图的时间序列网络模型[J]. 物理学报, 2012, 61(3): 86-96. https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201203015.htmZHOU T T, JIN N D, GAO Z K, et al. Limited penetrable visibility graph for establishing complex network from time series[J]. Acta Physica Sinica, 2012, 61(3): 86-96. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201203015.htm [4] WANG J, YANG C, WANG R, et al. Functional brain networks in Alzheimer's disease: EEG analysis based on limited penetrable visibility graph and phase space method[J]. Physica A Statistical Mechanics & Its Applications, 2016, 460: 174-187. [5] MING Z, MA W, MENG Q, et al. Noise resistance ability analysis of the visibility graph and the limited penetrable visibility graph[C]. Intelligent Control & Automation, Guilin. China: IEEE, 2016. [6] REN W, JIN N. Sequential limited penetrable visibility-graph motifs[J]. Nonlinear Dynamics, 2020, 99(3): 2399-2408. doi: 10.1007/s11071-019-05439-y [7] LIU H Z, ZHANG X C, ZHANG X. Exploring dynamic evolution and fluctuation characteristics of air traffic flow volume time series: A single waypoint case[J]. Physica A: Statistical Mechanics and its Applications, 2018, 30(2): 1-21. [8] LIU H Z, ZHANG X C, ZHANG X. Multiscale complexity analysis on airport air traffic flow volume time series[J]. Physica A: Statistical Mechanics and its Applications, 2020(6): 1-17. [9] 刘宏志. 空中交通流量波动动态演化及其非线性分析[D]. 北京: 北京交通大学, 2020.LIU H Z. Dynamic evolution and nonlinearity analysis of air traffic flow[D]. Beijing: Beijing Jiaotong University, 2020. (in Chinese) [10] 王红勇, 邓涛涛, SONG Ziqi, 等. 基于复杂网络模型的航路网络特性分析[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(2): 242-262. https://www.cnki.com.cn/Article/CJFDTOTAL-NJHY202002007.htmWANG H Y, DENG T T, SONG Z Q, WANG F, ZHAO Y F. Airway Network Characteristics Based on Complex Network Model[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2020, 37(2): 242-262. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-NJHY202002007.htm [11] 隋东, 邢娅萍, 涂诗晨. 恶劣天气条件下航路网络修复优化[J]. 航空学报, 2021, 42(2): 323-334. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202102028.htmSUI D, XING Y P, TU S C. Repair optimization strategy for air route networks under severe weather conditions[J]. Acta Aeronautica et Astronautica Sinica, 2021, 42(2): 323-334. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202102028.htm [12] 张洪海, 胡勇, 杨磊, 等. 多机场终端区微观交通流建模与仿真分析[J]. 西南交通大学学报, 2015, 50(2): 368-374. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201502025.htmZHANG H H, HU Y, YANG L, et al. Modeling and simulation analysis of microscopic traffic flow in multi-airport terminal airspace[J]. Journal of Southwest Jiaotong University, 2015, 50(2): 368-374. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201502025.htm [13] 张洪海, 范围, 廖志华, 等. 平行跑道运行模式对终端区交通流特性的影响研究[J]. 交通运输系统工程与信息, 2017, 17(3): 198-204. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703030.htmZHANG H H, FAN W, LIAO Z H, et al. Impacts of parallel runway operation modes on air traffic flow characteristics in terminal areas[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(3): 198-204. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201703030.htm [14] 张洪海, 杨磊, 别翌荟, 等. 终端区进场交通流广义跟驰行为与复杂相变研究[J]. 航空学报, 2014, 36(3): 949-961. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503029.htmZHANG H H, YANG L, BIE Y H, et al. Analysis on generalized following behavior and complex phase-transition law of approaching traffic flow in terminal airspace[J]. Acta Aeronautica et Astronautica Sinica, 2014, 36(3): 949-961. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201503029.htm [15] 张洪海, 许炎, 张哲铭, 等. 终端区空中交通流参数模型与仿真[J]. 交通运输系统工程与信息, 2014, 14(6): 58-64. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201406009.htmZHANG H H, XU Y, ZHANG Z M, et al. Air traffic flow parameter model and simulation for airport terminal area[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 58-64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201406009.htm [16] XU Y, ZHANG H, LIAO Z, et al. A dynamic air traffic model for analyzing relationship patterns of traffic flow parameters in terminal airspace[J]. Aerospace Science And Technology, 2016, 55(8): 10-23. [17] 张洪海, 汤一文, 许炎. TBO模式下终端区进场交通流优化模型与仿真分析[J]. 航空学报, 2020, 41(7): 325-338. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007028.htmZHANG H H, TANG Y W, XU Y. Optimizing arrival traffic flow in airport terminal airspace under trajectory based operations[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(7): 325-338. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB202007028.htm [18] 王超, 朱明, 赵元棣. 基于改进加权一阶局域法的空中交通流量预测模型[J]. 西南交通大学学报, 2018, 53(1): 206-213. https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801025.htmWANG C, ZHU M, ZHAO Y D. Air traffic flow prediction model based on improved adding-weighted one-rank local-rejion method[J]. Journal of Southwest Jiaotong University, 2018, 53(1): 206-213. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XNJT201801025.htm [19] WEINREICH I, RICKERT H, LUKASCHEWITSCH M. Wavelet-based time series prediction for air traffic data[C]. Wavelet Applications in Industrial Processing, Bellingham: SPIE, 2004. [20] 张弦, 王宏力. 嵌入维数自适应最小二乘支持向量机状态时间序列预测方法[J]. 航空学报, 2010, 31(12): 2309-2314. https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201012004.htmZHANG X, WANG H L. Condition time series prediction using least squares support vector machine with adaptive embedding dimension[J]. Acta Aeronautica et Astronautica Sinica, 2010, 31(12): 2309-2314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HKXB201012004.htm [21] 王兴隆, 刘洋, 潘维煌. 空中交通系统自组织临界特性辨识及应用[J]. 交通信息与安全, 2020, 38(2): 96-101. doi: 10.3963/j.jssn.1674-4861.2020.02.012ZWANG X L, LIU Y, PAN W H, Identification and application of self-organized criticality of air traffic system. [J]. Journal of Transport Information and Safety, 2020, 38(2): 96-101. doi: 10.3963/j.jssn.1674-4861.2020.02.012 [22] 中国民用航空局空中交通管理局. 中国民航空管流量管理运行规则(试行)[R]. 北京: 中国民用航空局空中交通管理局, 2020.Civil Aviation Administration of China. Operation rules for air traffic control flow management of civil aviation of China(for Trial Implementation)[R]. Beijing: Air traffic Management Bureau of CAAC, 2020. (in Chinese) [23] LACASA L, LUQUE B, BALLESTEROS F, et al. From time series to complex networks: The visibility graph[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(13): 4972-4975. [24] LUQUE B, LACASA L, BALLESTEROS F, et al. Horizontal visibility graphs: Exact results for random time series[J]. Physical Review E: Statistical, Nonlinear & Soft Matter Physics, 2009, 80(4 Pt 2): 046103. [25] NOOY W, MRVAR A, BATAGELJ V. Exploratory social network analysis with pajek[M]. Cambridge: Cambridge University Press, 2012. [26] SHEN-ORR S S, MILO R, MANGAN S, et al. Network motifs in the transcriptional regulation network of Escherichia coli[J]. Nature Genetics, 2002, 31(1): 64-68. [27] IACOVACCI J, LACASA L. Sequential visibility-graph motifs[J]. Physical Review E, 2016, 93(4): 042309.