留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

船舶航行交通事件实时检测技术研究现状与展望

黄琛 陈德山 吴兵 严新平

黄琛, 陈德山, 吴兵, 严新平. 船舶航行交通事件实时检测技术研究现状与展望[J]. 交通信息与安全, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001
引用本文: 黄琛, 陈德山, 吴兵, 严新平. 船舶航行交通事件实时检测技术研究现状与展望[J]. 交通信息与安全, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001
HUANG Chen, CHEN Deshan, WU Bing, YAN Xinping. A Real-time Detection of Nautical Traffic Events: A Review and Prospect[J]. Journal of Transport Information and Safety, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001
Citation: HUANG Chen, CHEN Deshan, WU Bing, YAN Xinping. A Real-time Detection of Nautical Traffic Events: A Review and Prospect[J]. Journal of Transport Information and Safety, 2022, 40(6): 1-11. doi: 10.3963/j.jssn.1674-4861.2022.06.001

船舶航行交通事件实时检测技术研究现状与展望

doi: 10.3963/j.jssn.1674-4861.2022.06.001
基金项目: 

国家重点研发计划项目 2021YFC3001504

国家自然科学基金重点国际(地区)合作项目 51920105014

国家自然科学基金面上项目 52272424

详细信息
    作者简介:

    黄琛(1998—), 硕士研究生.研究方向: 船舶交通事件检测.E-mail: 306145@whut.edu.cn

    通讯作者:

    陈德山(1986—), 博士, 副研究员.研究方向: 交通智能感知.E-mail: dschen@whut.edu.cn

  • 中图分类号: U692.5+1

A Real-time Detection of Nautical Traffic Events: A Review and Prospect

  • 摘要: 船舶航行交通事件检测依赖基于历史数据的离线检测方法, 检测模型适用性差, 难以满足监管人员的实时监测需求。通过分析船舶异常行为检测、航行事故检测等现有交通事件检测技术, 可以发现: 在数据层面, 监测数据来源单一、环境信息缺失; 在方法层面, 基于统计、风险评估等经典模型的事件监测方法效率高但准确性低, 基于神经网络、图像识别等机器学习的检测方法准确性高但效率低; 多源数据融合、多项技术结合的交通事件检测方法成为实时检测方法的发展趋势。在此基础上, 梳理了实时船舶航行交通事件检测的3项关键技术: (1)海事大数据技术: 高效处理船舶运动数据和航行环境数据, 统一多源异构数据结构标准, 降低数据源单一造成的事件误报率; (2)船舶行为动态建模技术: 利用知识图谱等技术融合船舶航行情境信息, 在不同船舶运动环境下利用深度学习、语义关联、图神经网络等方法构建不同的船舶行为模型, 提高检测准确性; (3)实时分析和可视化技术: 结合平行系统进行虚实系统间信息传递, 定性分析检测结果, 实时显示检测全过程, 提升监管过程中的人机交互效率。然后, 提出了包括数据采集、后台服务和客户端应用3个功能模块的交通事件平行检测系统; 该系统具备实时接收并处理船舶航行数据、分析并预测交通状态、动态检测并预警交通事件和仿真结果展示等功能。从数据融合、交通状态感知和交通虚实映射3个方面, 展望了面向海事监测实务的实时检测技术发展方向。

     

  • 图  1  船舶航行交通事件分类

    Figure  1.  Ship navigation traffic event classification

    图  2  船舶异常行为检测方法

    Figure  2.  Ship abnormal behavior detection methods

    图  3  船舶事故检测方法

    Figure  3.  Ship accident detection methods

    图  4  船舶航行交通事件检测关键技术

    Figure  4.  Key technologies of ship navigation traffic event detection

    图  5  平行检测系统架构

    Figure  5.  The architecture of parallel detection system

  • [1] 中华人民共和国交通运输部. 国家水上交通安全监管和救助系统布局规划[EB/OL]. 北京: 中华人民共和国交通运输部, 2007. [2007-7-24]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202006/t20200630_3320035.html.

    Ministry of Transport of the People's Republic of China. Layout planning of national water traffic safety supervision and rescue system[EB/OL]. Beijing: Ministry of Transport of the People's Republic of China, 2007. [2007-7-24]. https://xxgk.mot.gov.cn/2020/jigou/zhghs/202006/t20200630_3320035.html. (in Chinese)
    [2] 初秀民, 李祎承, 余玉欢. 长江中下游航道通过能力计算方法[J]. 交通运输系统工程与信息, 2014, 14(2): 213-219. doi: 10.3969/j.issn.1009-6744.2014.02.033

    CHU X M, LI Y C, YU Y H. Calculation method for traffic capacity in the midstream-downstream of Yangtze river[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(2): 213-219. (in Chinese) doi: 10.3969/j.issn.1009-6744.2014.02.033
    [3] RIVEIRO M, PALLOTTA G, VESPE M. Maritime anomaly detection: A review[J]. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 2018, 8(5): e1266.
    [4] 孟智勇, 姚聃, 白兰强, 等. 基于实地灾害调研和雷达观测对"东方之星"倾覆地点附近强风的估计[J]. 科学通报, 2016, 61(7): 797-798. https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201607018.htm

    MENG Z Y, YAO D, BAI L Q, et al. Wind estimation around the shipwreck of Oriental Star based on field damage surveys and radar observations[J]. Sci Bull, 2016, 61(7): 330-337. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXTB201607018.htm
    [5] 唐皇, 尹勇, 神和龙. 海船异常行为检测综述[J]. 重庆交通大学学报(自然科学版), 2019, 38(9): 109-115. doi: 10.3969/j.issn.1674-0696.2019.09.18

    TANG H, YIN Y, SHEN H L. Survey of abnormal behavior of marine vessels[J]. Journal of Chongqing Jiaotong University(Natural Science), 2019, 38(9): 109-115. (in Chinese) doi: 10.3969/j.issn.1674-0696.2019.09.18
    [6] 陈影玉, 杨神化, 索永峰. 船舶行为异常检测研究进展[J]. 交通信息与安全, 2020, 38(5): 1-11. doi: 10.3963/j.jssn.1674-4861.2020.05.001

    CHEN Y Y, YANG S H, SUO Y F. Research progress of ship behavior anomaly detection[J]. Journal of Transport Information and Safety, 2020, 38(5): 1-11. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.05.001
    [7] LONG Z J, LEE S K. Analysis of marine accident and its current status in South Korea[C]. 29thInternational Conference on Ocean, Offshore and Arctic Engineering, Shanghai: ASME, 2010.
    [8] HAN X, ARMENAKIS C, JADIDI M. Modeling vessel behaviours by clustering AIS data using optimized DBSCAN[J]. Sustainability, 2021, 13(15): 8162. doi: 10.3390/su13158162
    [9] RONG H, TEIXEIRA A P, SOARES C G. Data mining approach to shipping route characterization and anomaly detection based on AIS data[J]. Ocean Engineering, 2020(198): 106936.
    [10] RONG H, TEIXEIRA A P, SOARES C G. Maritime traffic probabilistic prediction based on ship motion pattern extraction[J]. Reliability Engineering & System Safety, 2022(217): 108061.
    [11] RONG H, TEIXEIRA A P, SOARES C G. Ship trajectory uncertainty prediction based on a Gaussian process model[J]. Ocean Engineering, 2019(182): 499-511.
    [12] PALLOTTA G, VESPE M, BRYAN K. Vessel pattern knowledge discovery from AIS data: A framework for anomaly detection and route prediction[J]. Entropy, 2013, 15(6): 2218-2245.
    [13] 王正星, 朱玉柱, 王春瑶. 大雾天气海上船舶交通异常挖掘识别方法[J]. 舰船科学技术, 2021, 43(2): 49-51. doi: 10.3404/j.issn.1672-7649.2021.02.010

    WANG Z X, ZHU Y Z, WANG C Y. Analysis on identification of traffic abnormalities in maritime vessels by heavy fog[J]. Ship Science and Technology, 2021, 43(2): 49-51. (in Chinese) doi: 10.3404/j.issn.1672-7649.2021.02.010
    [14] 向怀坤, 李伟龙, 谢秉磊. 粒子群优化神经网络的交通事件检测算法研究[J]. 计算机测量与控制, 2016, 24(2): 171-174. https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201602049.htm

    XIANG H K, LI W L, XIE B L. Research on traffic incident detection algorithm based on particle swarm optimizer neural network[J]. Computer Measurement & Control, 2016, 24(2): 171-174. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JZCK201602049.htm
    [15] 刘庆华, 丁文涛, 涂娟娟, 等. 优化BP_AdaBoost算法及其交通事件检测[J]. 同济大学学报(自然科学版), 2015, 43(12): 1829-1833. doi: 10.11908/j.issn.0253-374x.2015.12.010

    LIU Q H, DING W T, TU J J, et al. Improved BP_AdaBoost algorithm and its application in traffic incident detection[J]. Journal of Tongji University(Natural Science Edition), 2015, 43(12): 1829-1833. (in Chinese) doi: 10.11908/j.issn.0253-374x.2015.12.010
    [16] MA X, TAO Z, WANG Y, et al. Long short-term memory neural network for traffic speed prediction using remote microwave sensor data[J]. Transportation Research Part C: Emerging Technologies, 2015(54): 187-197.
    [17] 马文耀, 吴兆麟, 李伟峰. 船舶异常行为的一致性检测算法[J]. 交通运输工程学报, 2017, 17(5): 149-158. doi: 10.3969/j.issn.1671-1637.2017.05.014

    MA W Y, WU Z L, LI W F. Conformal detection algorithm of anomalous behaviors of vessel[J]. Journal of Traffic and Transportation Engineering, 2017, 17(5): 149-158. (in Chinese) doi: 10.3969/j.issn.1671-1637.2017.05.014
    [18] KOWALSKA K, PEEL L. Maritime anomaly detection using Gaussian process active learning[C]. 15th International Conference on Information Fusion, Singapore: IEEE, 2012.
    [19] BOTTS C H. A novel metric for detecting anomalous ship behavior using a variation of the DBSCAN clustering algorithm[J]. SN Computer Science, 2021, 2(5): 1-16.
    [20] ZHANG T, ZHAO S, CHENG B, et al. Detection of AIS closing behavior and MMSI spoofing behavior of ships based on spatiotemporal data[J]. Remote Sensing, 2020, 12(4): 702. doi: 10.3390/rs12040702
    [21] D'AFFLISIO E, BRACA P, WILLETT P. Malicious AIS spoofing and abnormal stealth deviations: A comprehensive statistical framework for maritime anomaly detection[J]. IEEE Transactions on Aerospace and Electronic Systems, 2021, 57(4): 2093-2108. doi: 10.1109/TAES.2021.3083466
    [22] ZHANG Z, SUO Y, YANG S, et al. Detection of complex abnormal ship behavior based on event stream[C]. 2020 Chinese Automation Congress(CAC), Shanghai: IEEE, 2020.
    [23] SHAHIR H Y, GLASSER U, SHAHIR A Y, et al. Maritime situation analysis framework: Vessel interaction classification and anomaly detection[C]. 2015 IEEE International Conference on Big Data, Santa Clara: IEEE, 2015.
    [24] CHEN P, HUANG Y, MOU J, et al. Probabilistic risk analysis for ship-ship collision: State-of-the-art[J]. Safety science, 2019(117): 108-122.
    [25] ZHANG W, KOPCA C, TANG J, et al. A systematic approach for collision risk analysis based on AIS data[J]. The Journal of Navigation, 2017, 70(5): 1117-1132. doi: 10.1017/S0373463317000212
    [26] WENG J, XUE S. Ship collision frequency estimation in port fairways: A case study[J]. The Journal of Navigation, 2015, 68(3): 602-618. doi: 10.1017/S0373463314000885
    [27] HUANG Y, VAN G P. Time-varying risk measurement for ship collision prevention[J]. Risk Analysis, 2020, 40(1): 24-42. doi: 10.1111/risa.13293
    [28] XI Y T, YANG Z L, FANG Q G, et al. A new hybrid approach to human error probability quantification-applications in maritime operations[J]. Ocean Engineering, 2017(138): 45-54.
    [29] SOTIRALIS P, VENTIKOS N P, HAMANN R, et al. Incorporation of human factors into ship collision risk models focusing on human centred design aspects[J]. Reliability Engineering & System Safety, 2016(156): 210-227.
    [30] LUO M, SHIN S H. Half-century research developments in maritime accidents: Future directions[J]. Accident Analysis & Prevention, 2019(123): 448-460.
    [31] WANG L, WANG J, SHI M, et al. Critical risk factors in ship fire accidents[J]. Maritime Policy & Management, 2021, 48(6): 895-913.
    [32] 付姗姗, 宋倩, 庄慧, 等. 基于Tripod-Beta模型的船舶火灾事故风险分析[J]. 安全与环境学报, 2020, 20(1): 9-19. https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001002.htm

    FU S S, SONG Q, ZHUANG H, et al. Overview risk analysis of the ship fire accidents via a Tripod-Beta model[J]. Journal of Safety and Environment, 2020, 20(1): 9-19. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-AQHJ202001002.htm
    [33] 李先锋, 徐森, 花义明. 基于OpenCV计算机视觉的海事视频船舶火灾烟雾检测技术[J]. 舰船科学技术, 2021, 43(22): 202-204. doi: 10.3404/j.issn.1672-7649.2021.11A.068

    LI X F, XU S, HUA Y M. Research on marine video ship fire smoke detectiontechnology based on OpenCV computer vision[J]. Ship Science and Technology, 2021, 43(22): 202-204. (in Chinese) doi: 10.3404/j.issn.1672-7649.2021.11A.068
    [34] 何光华. LNG运输船火灾检测与报警系统设计[J]. 船海工程, 2021, 50(1): 45-48.

    HE G H. Design of fire detection and alarm system for LNG carrier[J]. Ship & Ocean Engineering, 2021, 50(1): 45-48. (in Chinese)
    [35] 周泊龙, 宋英磊, 俞孟蕻. 基于图像处理的舰船火灾烟雾检测技术研究[J]. 舰船科学技术, 2016, 38(9): 111-115. https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201609025.htm

    ZHOU B L, SONG Y L, YU M H. Research on warship fire smoke detection technology based on image processing[J]. Ship Science and Technology, 2016, 38(9): 111-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCKX201609025.htm
    [36] MAZAHERI A, MONTEWKA J, KUJALA P. Modeling the risk of ship grounding—a literature review from a risk management perspective[J]. WMU Journal of Maritime Affairs, 2014, 13(2): 269-297. doi: 10.1007/s13437-013-0056-3
    [37] ACANFORA M, KRATA P, MONTEWKA J, et al. Towards a method for detecting large roll motions suitable for oceangoing ships[J]. Applied Ocean Research, 2018(79): 49-61.
    [38] 于卫红, 付飘云, 任月, 等. 基于PMI与BTM的船舶事故原因文本挖掘[J]. 交通信息与安全, 2021, 39(1): 35-44. doi: 10.3963/j.jssn.1674-4861.2021.01.0005

    YU W H, FU P Y, REN Y, et al. Text mining for causes of ship accidents based on PMI and BTM[J]. Journal of Transport Information and Safety, 2021, 39(1): 35-44. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.01.0005
    [39] LIU X, CAI H, ZHONG R, et al. Learning traffic as images for incident detection using convolutional neural networks[J]. IEEE Access, 2020(8): 7916-7924.
    [40] ZHANG D, ZHANG Y, ZHANG C. Data mining approach for automatic ship-route design for coastal seas using AIS trajectory clustering analysis[J]. Ocean Engineering, 2021(236): 109535.
    [41] KOGA S. Major challenges and solutions for utilizing big data in the maritime industry[D]. Malmö: World Maritime University, 2015.
    [42] YANG D, WU L, WANG S, et al. How big data enriches maritime research-a critical review of automatic identification system(AIS)data applications[J]. Transport Reviews, 2019, 39(6): 755-773.
    [43] International Maritime Organization(IMO). Report to the maritime safety committee[R]. London: The Maritime Safety Committee, 2014.
    [44] ZHANG T C, TIAN X, SUN X H, et al. Overview of research on knowledge graph embedding technology[J/OL]. Journal of Software, 2021[2021-11-15]. http://www.jos.org.cn/1000-9825/6429.htm.
    [45] JI S, PAN S, CAMBRIA E, et al. A survey on knowledge graphs: Representation, acquisition, and applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021, 33(2): 494-514.
    [46] 文元桥, 张义萌, 黄亮, 等. 基于语义的船舶行为动态推理机制[J]. 中国航海, 2019, 42(3): 34-39+50. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htm

    WEN Y Q, ZHANG Y M, HUANG L, et al. Mechanism of ship behavior dynamic reasoning based on semantics[J]. Navigation of China, 2019, 42(3): 34-39+50. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGHH201903008.htm
    [47] ZHU J, HAN X, DENG H, et al. KST-GCN: A knowledge-driven spatial-temporal graph convolutional network for traffic forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23(9): 1-11.
    [48] THOMAS J J. Illuminating the path: The research and development agenda for visual analytics[M]. Washington, D. C., USA: IEEE Computer Society, 2005.
    [49] WANG F Y. The emergence of intelligent enterprises: From CPS to CPSS[J]. IEEE Intelligent Systems, 2010, 25(4): 85-88.
    [50] 杨林瑶, 陈思远, 王晓, 等. 数字孪生与平行系统: 发展现状、对比及展望[J]. 自动化学报, 2019, 45(11): 2001-2031. https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201911001.htm

    YANG L Y, CHEN S Y, WANG X, et al. Digital twins and parallel systems: State of the art, comparisons and prospect[J]. Acta Automatica Sinica, 2019, 45(11): 2001-2031. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MOTO201911001.htm
    [51] 严新平, 李晨, 刘佳仑, 等. 新一代航运系统体系架构与关键技术研究[J]. 交通运输系统工程与信息, 2021, 21(5): 22-29+76. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm

    YAN X P, LI C, LIU J L, et al. Architecture and key technologies for new generation of waterborne transportation system[J]. Journal of Transportation Systems Engineering and Information Technology, 2021, 21(5): 22-29+76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT202105004.htm
  • 加载中
图(5)
计量
  • 文章访问数:  968
  • HTML全文浏览量:  370
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-06
  • 网络出版日期:  2023-03-27

目录

    /

    返回文章
    返回