A Model for Estimating Driving Sight Distances Based on Corner Point of Broken Line of Roadway
-
摘要: 开展行车视距调查对于营运期公路安全评价至关重要,这对车载条件下行车视距检测提出了要求。针对现有基于车道线图像特征点所构建的视距模型精确度不高的问题,提出了1种以车道线虚线角点为关键特征的行车安全视距测算模型。在车载设备获取的图像预处理基础上,采用轮廓跟踪法对车道线虚线轮廓进行提取,通过设定轮廓尖锐度阈值以实现对车道线虚线角点的初步筛选;使用最大、最小距离法对候选角点进行聚类分类,将每类中尖锐度最大的点判定为真实角点;此外,结合车道线虚线图像梯形特征实现对角点的精确提取;根据成像原理的坐标转换关系,通过解构角点在世界坐标和像素坐标之间的映射关系以求解二者之间的转换矩阵,得到实际道路环境的行车安全视距测算模型;将模型所测算的行车视距与运行车速所需的行车视距进行对比,实现对不同道路线形下行车视距的评价。通过实车实验对所提行车视距测算模型进行动态和静态检测精度验证。结果表明:该模型在静态条件下的行车视距检测误差小于7%,低于采用车道线特征点提取方法检测的误差;在动态车载条件可实现行车视距的连续检测,表明在该模型能适应动态条件对行车视距的检测。该模型可实时动态检测行车视距,为营运期公路安全评价提供支撑。Abstract: A study of driving sight distances is critical for safety evaluation of highways, which makes it ideal for estimating driving sight distances using in-vehicle equipment. To address the low accuracy of the existing sight distance models using the feature points of lane marking images, a model for estimating driving sight distances with the dotted corner points as the important feature is proposed. Based on the images preprocessing obtained by an in-vehicle equipment, the contour tracking method is used to extract the contour of line markings, so that the initial screening of the corner points can be extracted by setting a threshold sharpness of the contour. After using the maximum and minimum distance methods to cluster and classify candidate corner points, the points with the largest sharpness in each category is determined as the"true"corner points. In addition, the accurate extraction of the diagonal points is achieved by using the trapezoidal features of the dashed line image of the lane marking. By considering the relationship between the global mapping coordinates and the pixel coordinates of the corner points, the transformation matrix between the two coordinates is settled and the estimation model of driving sight distance is developed. By comparing with estimated sight distance with the required distance at a given operation speed, the evaluation of driving sight distance of the alignment of current road segment is implemented. The dynamic and static detection accuracy of the proposed sight distance estimation model is verified by a field experiment. Study results show that the estimation errors under the static condition are less than 7%, which is lower than the traditional methods. In addition, under dynamic conditions, the errors of driving sight distance are consistent with the results of static conditions, indicating that the proposed estimation model has a good performance under dynamic conditions. Comprehensively, the model can be used to support safety evaluation of highway design and operation.
-
表 1 二、三、四级公路的停车、会车和超车视距
Table 1. Sight distance for parking, meeting and overtaking on second, third, and fourth level highways
设计速度/(km/h) 停车视距/m 会车视距/m 超车视距/m 80 110 220 550 60 75 150 350 40 40 80 200 表 2 计算误差
Table 2. Calculation error
序号 测量值/m 计算值/m 绝对误差/m 相对误差/% 1 24.2 25.51 1.31 5.41 2 17.4 18.14 0.74 4.52 3 20.2 21.34 1.14 5.64 4 25.3 27.01 1.71 6.76 5 23.3 24.92 1.62 6.95 6 29.8 31.76 1.96 6.58 7 18.5 19.19 0.69 3.73 8 21.3 22.61 1.31 6.15 -
[1] 张卫华, 张鑫, 曹世全, 等. 适应能见度变化的道路线形诱导标志设置方法[J]. 中国安全科学学报, 2019, 29(7): 76-83. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201907017.htmZHANG W H, ZHANG X, CAO S Q, et al. Road alignment induction sign setting method adapting to visibility change[J]. China Safety Science Journal, 2019, 29(7): 76-83. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201907017.htm [2] 文森, 梁波, 肖尧, 等. 基于反应时间的公路隧道接近段停车视距研究[J]. 交通信息与安全, 2021, 39(2): 43-52. doi: 10.3963/j.jssn.1674-4861.2021.02.006WEN S, LIANG B, XIAO Y, et al. A stopping distance in access zone of highway tunnel based on reaction time[J]. Journal of Transport Information and Safety, 2021, 39(2): 43-52 (in Chinese) doi: 10.3963/j.jssn.1674-4861.2021.02.006 [3] WANG Y, TEOH K, SHEN D G. Lane detection and tracking using B-Snake[J]. Image and Vision Computing. 2004, 22 (4): 269-280. doi: 10.1016/j.imavis.2003.10.003 [4] 郭磊, 李克强, 王建强, 等. 应用方向可调滤波器的车道线识别方法[J]. 机械工程学报, 2008(8): 214-218+226. doi: 10.3321/j.issn:0577-6686.2008.08.038GUO L, LI K Q, WANG J Q, et al. Lane detection method by steerable filters[J]. Chinese Journal of Mechanical Engineering, 2008(8): 214-218+226. (in Chinese) doi: 10.3321/j.issn:0577-6686.2008.08.038 [5] ANDRDE C, BUENO F, FRANCO R, et al. A novel strategy for road lane detection and tracking based on a vehicle's forward monocular camera[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 20(4): 1497-1507. [6] XING Y, LYU C, WANG H J, et al. Dynamic integration and online evaluation of vision-based lane detection algorithms[J]. IET Intelligent Transport Systems, 2018, 13(1): 55-62. [7] ZHANG Z Y, QIAN W, PAN L, et al. Adaptive zoom distance measuring system of camera based on the ranging of binocular vision[J]. Modern Applied Science, 2012, 6(5): 43-47. [8] 高波. 基于单目视觉的公路视距检测技术研究[D]. 西安: 长安大学, 2017.GAO B. Research on road slight distance detection technology based on monocular vision[D]. Xi'an: Chang'an University, 2017. (in Chinese) [9] 白琛琛. 高等级公路弯道视距测算及安全评价方法研究[D]. 西安: 长安大学, 2020.BAI C C. Research on sight distance calculation and safety evaluation method for high-grade highway curves[D]. Xi'an: Chang'an University, 2020.(in Chinese) [10] CHEN Y, HE M Y. Sharp curve lane boundaries projective model and detection[C]. 10th International Conference on Industrial Informatics, Beijing, China: IEEE, 2012. [11] AGRAWAL S, DEO K, HALDAR S, et al. Off-road lane detection using superpixel clustering and ransac curve fitting[C]. 15th International Conference on Control, Automation, Robotics and Vision(ICARCV), Singapore: IEEE, 2018 [12] SCHOMERUS V, ROSEBROCK D, WAHL M. Camera-based lane border detection in arbitrarily structured environments[C]. 2014 IEEE Intelligent Vehicles Symposium, Michigan, USA: IEEE, 2014. [13] PARK Y, HWANG Y. Robust range estimation with a monocular camera for vision-based forward collision warning system[J]. The Scientific World Journal, 2014(12): 1-9. [14] 陈雨人, 付云天, 汪凡. 基于支持向量回归的视距计算模型建立和应用[J]. 中国公路学报, 2018, 31(4): 105-113. doi: 10.3969/j.issn.1001-7372.2018.04.013CHEN Y, FU Y T, WANG F. Establishment and application of slight distance computing model based on support vector regression[J]. China Journal of Highway and Transport, 2018, 31(4): 105-113. doi: 10.3969/j.issn.1001-7372.2018.04.013 [15] LEBMANN S, MEUTER M, MULLER D, et al. Probabilistic distance estimation for vehicle tracking application in monocular vision[C]. 4th IEEE Intelligent Vehicles Symposium, Gothenburg, Sweden: IEEE, 2016. [16] JWP A, YWH A, YZY A, et al. Development of an embedded road boundary detection system based on deep learning[J]. Image and Vision Computing, 2020, 100(5), 82-95. [17] 曹思佳, 代扬, 余洪山, 等. 基于机器视觉的机械表走时精度测量[J]. 湖南大学学报(自然科学版), 2020, 47(12): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202012011.htmCAO S J, DAI Y, YU H S, et al. Accuracy measurement of mechanical watch travel time based on machine vision[J]. Journal of Hunan University(Natural Science), 2020, 47 (12): 86-94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202012011.htm [18] 钱文光, 林小竹. 基于轮廓尖锐度的图像角点检测算法[J]. 计算机工程, 2008(6): 202-204. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200806075.htmQIAN W G, LIN X Z. Detection algorithm of image corner based contour sharp degree[J]. Computer Engineering, 2008 (6): 202-204.(in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJC200806075.htm [19] 刘燕. 基于抽样和最大最小距离法的并行K-means聚类算法[J]. 智能计算机与应用, 2018, 8(6): 37-39+43. doi: 10.3969/j.issn.2095-2163.2018.06.008LIU Y. Parallel K-means clustering algorithm based on sampling and maximum & minimum distance method[J]. Intelligent Computer and Applications, 2018, 8(6): 37-39+43. (in Chinese) doi: 10.3969/j.issn.2095-2163.2018.06.008 [20] 郑榜贵, 田炳香, 段建民. 基于交比不变量的摄像机标定方法[J]. 北京工业大学学报, 2008(5): 476-480. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200805008.htmZHEN B G, TIAN B X, DUAN J M. Camera calibration approach based on cross-ratio invariability[J]. Journal of Beijing University of Technology, 2008(5): 476-480. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD200805008.htm