A Study on the Correlation Between Vehicle Control Behaviors and Rear-end Collision Risk under Foggy Conditions
-
摘要: 为分析驾驶人在雾天环境下的车辆操纵行为特性及其与追尾风险的内在关系,设计并开展驾驶模拟试验,采用方差分析,混合效应模型等对晴天、雾天2种环境下驾驶人的车辆操纵行为特性进行对比分析,并利用相关性分析及二元Logistics回归模型对避撞过程中行为间的相互作用及其与追尾风险间的关系进行挖掘。结果表明:雾天环境下驾驶人的车道偏移标准差比晴天环境下大20.8%,表明雾天环境下驾驶人的车辆保持能力较差;同时,驾驶人在雾天环境下为持续获得前车视野保持的车头时距比晴天条件下小0.423 s;雾天时驾驶人在追尾避撞阶段的平均减速度是晴天时的1.1倍;受到初始车头时距的影响,雾天时驾驶人在避撞过程中的最小车头时距相较于晴天减少了0.475 s,此时最小车头时距的减少导致雾天环境下发生追尾碰撞的风险较于晴天环境增加了4.93倍。Abstract: In order to analyze the characteristics of vehicle control behaviors and study its relationship with rear-end collision risk under foggy conditions, a driving simulationexperiment is conducted, and corresponding behaviors under foggy weather is compared with that under good visibility using ANONA and mixed-effect regression model. Further, the relationship between vehicle control behavior and rear-end collision risk is investigated by correlation analysis and a binary logistic regression model. The results show that the standard deviations of lane departure under foggy conditions are 20.8% higher than that under good visibility conditions, indicates poor vehicle control of drivers under foggy conditions. Besides, drivers prefer to keep shorter time headway, in order to maintain a good vision to the vehicles in front under foggy weather. It is also found that, during the process of avoiding rear-end collision, average deceleration underfoggy weather is 1.1 times of that under good weather. Moreover, study results show that the average minimum time headway under foggy conditions is 0.475 s shorter than that undergood visibility conditions, which results in the rear-end collision risk increases by 4.93 times.
-
表 1 变量定义及符号描述
Table 1. Variable definitions and symbolic descriptions
阶段 变量描述 符号/单位 跟驰阶段 车道偏移距离标准差(standard deviation of lane position)前车开始减速时刻前3 s内主车偏离车道中心线距离的标准差 SDLP/m 平均横向加速度(average lateral acceleration)前车开始减速时刻前3 s内主车横向速度变化快慢程度的平均值 AVELA/(m/s2) 初始车头时距(initial time headway)前车开始减速时刻2车的车头时距 THWB/s 避撞阶段 减速反应时间(brake response time)前车开始减速时刻到主车开始减速时刻的持续时间 BRT/s 平均减速度(average deceleration)主车避撞过程中减速度的平均值 AVED/(m/s2) 最小车头时距(minimum time headway)主车避撞过程中2车最小车头时距 MinTHW/s 表 2 跟驰阶段各变量在天气因素下的描述性统计和方差分析结果
Table 2. Results of descriptive statistics and analysis of variance of the variables in the car-following phase under weather factors
行为变量 分类 平均值 F值 Sig. 车道偏移标准差/m 晴天 0.024 4.388 0.037 雾天 0.029 横向平均加速度/(m/s2) 晴天 0.001 0.138 0.710 雾天 < 0.001 初始车头时距/s 晴天 2.814 19.921 < 0.001 雾天 2.391 表 3 避撞阶段各变量在天气因素下的描述性统计和方差分析结果
Table 3. Results of descriptive statistics and analysis of variance of variables under weather factors during collision avoidance phase
行为变量 分类 平均值 F值 Sig. 减速反应时间/s 晴天 1.415 0.037 0.847 雾天 1.441 平均减速度/(m/s2) 晴天 3.882 8.475 0.004 雾天 4.289 最小车头时距/s 晴天 2.384 42.049 < 0.001 雾天 1.909 表 4 减速反应时间的混合效应模型
Table 4. Mixed effect model of brake response time
参数 估算 标准误差 t 95% 置信区间 下限 上限 截距 0.120 0.076 1.575 -0.030 0.269 职业 0.111 0.046 -2.407 -0.201 -0.020 车头时距/s 0.475 0.025 19.199 0.427 0.524 主车速度/(m/s) 0.355 0.058 6.126 0.241 0.470 -
[1] 公安部交通管理局. 中国道路交通事故统计年报[R]. 北京: 公安部交通管理局, 2017.Ministry of Public Security, Transportation Bureau. The road traffic accidents statistics report in China[R]. Beijing: Ministry of Public Security, Transportation bureau, 2017. (in Chinese) [2] 冯文燕, 张存保, 曹雨, 等. 雾天区域高速公路网交通运行状态建模与分析[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(1): 93-98. https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202101018.htmFENG W Y, ZHANG C B, CAO Y, et al. Traffic operation state modeling and analysis of expressway network in foggy region[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(1): 93-98. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTKJ202101018.htm [3] 赵亮, 刘浩学, 王磊, 等. 恶劣天气下驾驶人生理反应与行车安全关系[J]. 中国公路学报, 2016, 29(11): 147-152. doi: 10.3969/j.issn.1001-7372.2016.11.019ZHAO L, LIU H X, WANG L, et al. Relationship between drivers physiological reaction and driving safety in bad weather[J]. China Journal of Highway and Transport, 2016, 29(11): 147-152. (in Chinese) doi: 10.3969/j.issn.1001-7372.2016.11.019 [4] WHITE M E, JEFFERY D J. Some aspects of motorway traffic behaviour in fog[R]. Berkshire, UK: Transport and Road Research Laboratory, 1980. [5] 李长城, 刘小明, 荣建, 等. 不同能见度条件下高速公路车辆速度特性研究[J]. 交通运输系统工程与信息, 2014, 14(6): 213-218. doi: 10.3969/j.issn.1009-6744.2014.06.035LI C C, LIU X M, RONG J, et al. Characteristics of vehicle speed for expressway under different visibility condition[J]. Journal of Transportation Systems Engineering and Information Technology, 2014, 14(6): 213-218. (in Chinese) doi: 10.3969/j.issn.1009-6744.2014.06.035 [6] HAWKINS R K. Motorway traffic behaviour in reduced visibility conditions[C]. 2nd International Conference on Vision in Vehicles, Nottingham: Elsevier Science, 1988. [7] 戢晓峰, 张琪, 覃文文, 等. 恶劣天气对高原山区高速公路交通流特征的影响分析[J]. 交通信息与安全, 2020, 38(4): 10-16. doi: 10.3963/j.jssn.1674-4861.2020.04.002JI X F, ZHANG Q, QIN W W, et al. Impact of severe weather on highway traffic flow characteristics in mountainous plateau region[J]. Journal of Transport Information and Safety, 2020, 38(4): 10-16. (in Chinese) doi: 10.3963/j.jssn.1674-4861.2020.04.002 [8] 赵亮, 刘浩学, 石保同. 复杂道路环境中驾驶人应激反应能力研究[J]. 中国安全科学学报, 2015, 25(4): 105-109. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201504019.htmZHAO L, LIU H X, SHI B T. Stress response ability of drivers in complex road environment[J]. China Safety Science Journal, 2015, 25(4): 105-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK201504019.htm [9] 王佳丽. 雾天高速公路连环追尾事故风险产生机理研究[D]. 北京: 北京交通大学, 2018.WANG J L. A study on the risk mechanism of multiple rear-end collision accident on fog-day expressway[D]. Beijing: Beijing Jiaotong University, 2018. (in Chinese) [10] 李晓梦, 闫学东, 赵佳, 等. 雾天对弯道驾驶行为的影响研究[J]. 交通信息与安全, 2014, 32(5): 120-125. doi: 10.3963/j.issn.1674-4861.2014.05.021LI X M, YAN X D, ZHAO J, et al. Effects of fog conditions on driving behaviors on curves[J]. Journal of Transport Information and Safety, 2014, 32(5): 120-125. (in Chinese) doi: 10.3963/j.issn.1674-4861.2014.05.021 [11] 陈秀锋, 曲大义, 刘尊民, 等. 基于驾驶模拟器的雾天驾驶行为特性研究[J]. 武汉理工大学学报(交通科学与工程版, )2013, 37(4): 763-766. doi: 10.3963/j.issn.2095-3844.2013.04.022CHEN X F, QU D Y, LIU Z M, et al. Driving performance research in foggy conditions based on driving simulator[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2013, 37(4): 763-766. (in Chinese) doi: 10.3963/j.issn.2095-3844.2013.04.022 [12] 赵晓华, 鞠云杰, 李佳, 等. 基于驾驶行为和视觉特性的长大隧道突起路标作用效果评估[J]. 中国公路学报, 2020, 33(6): 29-41. doi: 10.3969/j.issn.1001-7372.2020.06.003ZHAO X H, JU Y J, LI J, et al. Evaluation of the effect of rpms in extra-long tunnels based on driving behavior and visual characteristics[J]. China Journal of Highway and Transport, 2020, 33(6): 29-41. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.06.003 [13] BROUGHTON K L, SWITZER F, SCOTT D. Car following decisions under three visibility conditions and two speeds tested with a driving simulator[J]. Accident Analysis & Prevention, 2007, 39(1): 106-116. http://www.onacademic.com/detail/journal_1000034577615010_5478.html [14] 陈秀锋, 武帅, 宋著贺, 等. 雾天环境下S形弯道驾驶行为特性[J]. 科学技术与工程, 2019, 19(29): 344-348. doi: 10.3969/j.issn.1671-1815.2019.29.056CHEN X F, WU S, SONG Z H, et al. Scurve driving behavior characteristics in foggy environment[J]. Science, Technology and Engineering, 2019, 19(29): 344-348. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.29.056 [15] MUELLER A S, TRICK L M. TRICK. Driving in fog: the effects of driving experience and visibility on speed compensation and hazard avoidance[J]. Accident Analysis & Prevention, 2012(48): 472-479. http://pdfs.semanticscholar.org/5342/6609bb20d71afdc0b7e91a78d5acfe1959a4.pdf [16] 武帅, 陈秀锋, 高艳艳, 等. 雾天环境下驾驶行为特性研究[J]. 青岛理工大学学报, 2019, 40(5): 101-105. https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201905016.htmWU S, CHEN X F, GAO Y Y, et al. Study on driving behavior characteristics in foggy environment[J]. Journal of Qingdao Technological University, 2019, 40(5): 101-105. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDJG201905016.htm [17] 冯笑凡. 基于视觉特性的高速雾天车路协同预警系统分心研究[D]. 北京: 北方工业大学, 2021.FENG X F. Distraction research of connected vehicle early-warning system under foggy condition freeway based on driver's visual characteristics[D]. Beijing: North China University of Technology, 2021. (in Chinese) [18] 黄星. 雾天不同能见度条件下高速公路动态限速方法研究[D]. 西安: 长安大学, 2018.HUANG X. Study on dynamic speed limit method of freeway under different visibility conditions in foggy weather[D]. Xi'an: Chang'an University, 2018. (in Chinese) [19] 张驰, 贺亚龙, 黄星, 等. 雾天不同能见度条件下高速公路限速建议值研究[J]. 交通信息与安全, 2018, 36(5): 31-39. doi: 10.3963/j.issn.1674-4861.2018.05.004ZHANG C, HE Y L, HUANG X, et al. A study on speed limit of different visibility on expressways under foggy weather[J]. Journal of Transport Information and Safety, 2018, 36(5): 31-39. (in Chinese) doi: 10.3963/j.issn.1674-4861.2018.05.004 [20] SNOWDEN R J, STIMPSON N, RUDDLE R A. Speed perception fogs up as visibility drops[J]. Nature, 1998, 392(6675): 450. doi: 10.1038/33049 [21] VAN D H, ROTHENGATTER M, MEIJMAN T. Strategic adaptations to lack of preview in driving[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 1998(1): 59-75. http://www.onacademic.com/detail/journal_1000035532312710_eb6c.html [22] 赵佳. 基于驾驶模拟实验的雾天对驾驶行为影响的研究[D]. 北京: 北京交通大学, 2012.ZHAO J. Study of driving behavior under fog weather condition based on driving simulator experiment[D]. Beijing: Beijing Jiaotong University, 2012. (in Chinese) [23] 孟凡兴, 张良, 张伟. 驾驶员车头时距研究[J]. 工业工程与管理, 2013, 18(2): 131-135. https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201302024.htmMENG F X, ZHANG L, ZHANG W. A study on drivers'time headway[J]. Industrial Engineering and Management, 2013, 18(2): 131-135. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYGC201302024.htm [24] 张旭欣. 能见度影响下跟驰车辆驾驶行为研究[D]. 合肥: 合肥工业大学, 2018.ZHANG X X. Study on driving behavior of car-following vehicle under the influence of visibility[D]. Hefei: Hefei University of Technology, 2018. (in Chinese) [25] 高坤, 涂辉招, 时恒, 等. 雾霾天气低能见度对不同跟驰状态驾驶行为的影响[J]. 吉林大学学报(工学版), 2017, 47(6): 1716-1727. https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201706007.htmGAO K, TU H Z, SHI H, et al. Effect of low visibility in haze weather condition longitudinal driving behavior in different car-following stage[J]. Journal of Jilin University (Engineering and Technology Edition), 2017, 47(6): 1716-1727. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201706007.htm [26] 王雪松, 朱美新, 陈铭. 工况紧急程度对驾驶员避撞行为的影响[J]. 同济大学学报(自然科学版), 2016, 44(6): 876. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201606009.htmWANG X S, ZHU M X, CHEN M. Impacts of situational urgency on drivers'collision avoidance behaviors[J]. Journal of Tongji University (Natural Science), 2016, 44(6): 876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201606009.htm [27] HUANG Y, YAN X, LI X, et al. Using a multi-user driving simulator system to explore the patterns of vehicle fleet rear-end collisions occurrence under different foggy conditions and speed limits[J]. Transportation Research Part F: Traffic Psychology and Behaviour, 2020, (74): 161-172. http://www.sciencedirect.com/science/article/pii/S1369847820305131