An Approach for Determining Seating Capacity of 12m City Buses Based on Passenger Density
-
摘要: 为选用合理的座椅布置来适应运营时段内客流的变化, 提高城市客车服务能力, 调查了坐姿乘客在车厢地板上的平均投影面积, 明确了划分不同运营时段的判别准则, 提出了1种综合考虑坐姿和站立乘客的乘客密度指数, 分析了车上人数和高峰流量系数对座椅数目最优解的影响; 提出了公交线路上采用单一座椅布置情形下的12m城市客车最优座椅数目确定方法, 分析了座椅布置与运营时段之间的匹配方法, 运用西安市7条公交线路的客流数据验证了模型的可行性, 分析了3种常见座椅布置对运营时段和线路属性的适应性。结果表明: 坐姿乘客在车厢地板上的平均投影面积为0.35 m2/人; 高峰客流系数是影响12 m城市客车座椅数目的关键因素; 公交线路单一座椅布置的座椅数目推荐值为21~43座; 控制实际座椅数目与最优解的偏差在2个座位以内且满足通用布置原则要求时, 可使座椅布置适配公交线路的效果达到最佳。Abstract: The projected area of seated passengers on board is investigated to provide an optimal solution for the seating configuration to adapt to the passenger flow in the operational periods and improve the serviceability of city buses. The criteria regarding whether the current trip is a peak shift are defined, with a passenger density index proposed for optimizing the seating capacity in operational periods considering both standing and seated passengers. Besides, the work analyzes the effects of the number of people on board and the peak coefficient on the optimal solution of the capacity of seats. An approach is proposed to determine the optimal capacity of seats with a single seat configuration of all the 12 m city buses, with the correspondence between capacity of seats allocated to the bus lines and the operational periods discussed. The feasibility of the present approach is demonstrated through a case study. Moreover, the applicability of three main seat configurations to the operational periods and the attributes of the bus lines are compared. The results show that the projected area of a seated passenger is 0.35 m2 in the city buses in Xi'an and the peak coefficient has a more significant effects on the capacity of seats of the 12 m city buses. The recommended value of the capacity of seats of the 12 m city buses preferably ranges from 21 to 43 seats. When the deviation of the actual capacity of seats with the optimal solution is controlled within 2 seats and the specifications of seat configuration are considered, which adapted to the bus line can achieve the desired effects.
-
Key words:
- public transport /
- city bus /
- passenger density /
- seating capacity /
- peak coefficient of passenger flow
-
表 1 西安市坐姿乘客投影面积
Table 1. Projected area of the seated passengers in Xi'an
座椅朝向 座椅高度/m 乘客身高/m 投影面积/m2 样本数/人 垂直于行驶方向的侧座 0.45 [1.60, 1.75) 0.35 72 [1.75, 1.90) 0.38 20 平行于行驶方向的正座 0.55 [1.60, 1.75) 0.34 69 [1.75, 1.90) 0.37 21 表 2 5条线路的高峰客流量系数与最优解计算结果
Table 2. Peak coefficients and optimal solutions of the five bus lines investigated
公交线路 No.l No.2 No.3 No.4 No.5 平峰时段客流量/人 23 156 19 822 34 323 26 418 18 687 高峰时段客流量/人 13 281 5 266 10 363 9 488 2 460 髙峰客流量系数β 0.364 0.21 0.231 0.264 0.116 座椅数目最优解S0/ U=35 27 32 31 30 35 U=45 25 30 29 28 34 U=55 23 29 28 27 33 U=65 23 28 27 26 32 U=75 22 28 27 26 32 U=85 22 27 26 25 32 乘客密度指数f/范围/(人/m2) 3.4~7.1 3.1 ~7.3 3.1 ~7.3 3.2~7.2 2.7~7.5 -
[1] 闫晟煜, 肖润谋. 西安市CNG燃料公交客车气耗测试行驶工况模拟[J]. 长安大学学报(自然科学版), 2015, 35(3): 136-142. doi: 10.3969/j.issn.1671-8879.2015.03.021YAN Shengyu, XIAO Runmou. Development of driving cycle of Xi'an bus and CNG consumption verification[J]. Journal of Chang'an University(Natural Science Edition), 2015, 35(3): 136-142. (in Chinese). doi: 10.3969/j.issn.1671-8879.2015.03.021 [2] TIRACHINI A, HENSHER D A, ROSE J M. Crowding in public transport systems: Effects on users, operation and implications for the estimation of demand[J]. Transportation Research Part A: Policy and Practice, 2013, 53(7): 36-52. http://www.hydeparkandwoodhouseonline.com/wp-content/uploads/2014/01/NGT-travel-and-comfort.pdf [3] BJORKLUND G, SWARDH J E. Estimating policy values for in1vehicle comfort and crowding reduction in local public transport[J]. Transportation Research Part A: Policy and Practice, 2017, 106(12): 453-472. http://www.onacademic.com/detail/journal_1000040122588510_1577.html [4] LEE K. Design of the hybrid passenger density information system[J]. International Journal of Control and Automation, 2015, 8(11): 145-156. doi: 10.14257/ijca.2015.8.11.15 [5] 闫晟煜, 赵转转, 姚瑞明. 座椅布置选型对公交客车站立密度的影响[J]. 交通信息与安全, 2018, 36(4): 36-41. doi: 10.3963/j.issn.1674-4861.2018.04.006YAN Shengyu, ZHAO Zhuanzhuan, YAO Ruiming. Correlation between standing density and layout of seats on city bus[J]. Journal of Transport Information and Safety, 2018, 36(4): 36-41. (in Chinese). doi: 10.3963/j.issn.1674-4861.2018.04.006 [6] 史芮嘉, 毛保华, 丁勇, 等. 地铁车厢内乘客站立位置选择行为研究[J]. 交通运输系统工程与信息, 2017, 17(2): 142-147+159. https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702021.htmSHI Ruijia, MAO Baohua, DING Yong, et al. Correlation between standing density and layout of seats on city bus[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(2): 142-147+159. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201702021.htm [7] PALMA A D, KILANI M, PROOST S. Discomfort in mass transit and its implication for scheduling and pricing[J]. Transportation Research Part B: Methodological, 2015, 71(1): 1-18. http://www.sciencedirect.com/science/article/pii/S0191261514001702 [8] HAYWOOD L, KONING M. The distribution of crowding costs in public transport: New evidence from Paris[J]. Transportation Research Part A: Policy and Practice, 2015, 77(7): 182-201. http://www.onacademic.com/detail/journal_1000037980699910_9d3d.html [9] BATARCE M, MUNOZ J C, ORTUZAR J D D. Valuing crowding in public transport: Implications for cost1benefit analysis[J]. Transportation Research Part A: Policy and Practice, 2016, 91(9): 358-378. http://www.sciencedirect.com/science/article/pii/S0965856415302317 [10] 吴奇兵, 陈峰, 高永鑫, 等. 城市轨道交通车厢立席密度计算模型[J]. 交通运输工程学报, 2015, 15(4): 101-109. https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504015.htmWU Qibing, CHEN Feng, GAO Yongxin, et al. Computation model of standing passenger density in urban rail transit carriage[J]. Journal of Traffic and Transportation Engineering, 2015, 15(4): 101-109. (in Chinese). https://www.cnki.com.cn/Article/CJFDTOTAL-JYGC201504015.htm [11] TIRACHINI A, HURTUBIA R, DEKKER T, et al. Estimation of crowding discomfort in public transport: Results from Santiago de Chile[J]. Transportation Research Part A: Policy and Practice, 2017, 103(9): 311-326. http://eprints.whiterose.ac.uk/118336/1/Crowding_TT_trade_offv05.pdf [12] HÖRCHER D, GRAHAM D J, ANDERSON R J. The economics of seat provision in public transport[J]. Transportation Research Part E: Logistics and Transportation Review, 2018, 109(1): 277-292. http://www.sciencedirect.com/science/article/pii/s1366554517305872 [13] CARLOS A, ANDREW M, SHARON C. An observational comparison of the older and younger bus passenger experience in a developing world city[J]. Ergonomics, 2015, 59(6): 840-850. [14] ROKIBUL I, HADIUZZAMAN M, RAJIB, et al. Bus service quality prediction and attribute ranking: a neural network approach[J]. Public Transport, 2016, 8(2): 295-313. doi: 10.1007/s12469-016-0124-0 [15] AYADI A, HAMMAMI S. An analysis of the performance of public bus transport in Tunisian cities[J]. Transportation Research Part A: Policy and Practice, 2015, 75(5): 51-60. http://smartsearch.nstl.gov.cn/paper_detail.html?id=7a191ee991c60b4842c51f55ed4bffc9 [16] SOUZA D C. Accessibility and user performance modeling for inclusive transit bus design[J]. SAE International Journal of Commercial Vehicles, 2014, 7(1): 50-58. doi: 10.4271/2014-01-0463 [17] AMIRIPOUR S M, CEDER A, MOHAYMANY S. Hybrid method for bus network design with high seasonal demand variation[J]. Journal of Transportation Engineering, 2014, 140(6): 1-11. http://ieeexplore.ieee.org/document/6719894/ [18] JI Yanjie, GAO Liangpeng, CHEN Dandan, et al. How does a static measure influence passengers'boarding behaviors and bus dwell time?Simulated evidence from Nanjing bus stations[J]. Transportation Research Part A: Policy and Practice, 2018, 110(4): 13-25. http://www.onacademic.com/detail/journal_1000040208110210_4273.html [19] Transportation research board. Capacity and quality of service manual[M]. 2ndEd. Washington, D. C. : Transportation Research Board of the National Academies, 2003. [20] 中华人民共和国住房与城乡建设部. 地铁设计规范: GB501571-2013[S]. 北京: 北京城建设计发展集团股份有限公司, 2013. Ministry of Housing and Urban1rural Development of the People's Republic of China. Code for design of metro: GB 50157-2013[S]. Beijing: Beijing Urban Engineering Design and Research Institute Co., Ltd, 2013. (in Chinese). [21] HOQUE M, HALDER P K, FOUZDER P K, et al. Ergonomic design of a Bangladesh bus passenger seat[J]. Occupational Ergonomics, 2017, 13(3/4): 157-172. http://www.researchgate.net/profile/Pobitra_Kumar_Halder/publication/311873494_Ergonomic_design_of_a_Bangladesh_bus_passenger_seat/links/59172876aca27200fe51b1c9/Ergonomic-design-of-a-Bangladesh-bus-passenger-seat.pdf [22] 上海市城市交通管理局. 公交客车通用技术要求: DB31/T30612008[S]. 上海: 上海市质量技术监督局, 2009. Shanghai Municipal Bureau of Urban Transportation. General technical requirements for bus: DB31/T 30612008[S]. Shanghai: Shanghai Municipal Bureau of Quality and Technical Supervision, 2009. (in Chinese). [23] MORTADHA G, MOHAMED N, AJMI H, et al. Mechatronic rail vehicle design based on the passenger comfort[J]. Journal of Engineering Science and Technology Review, 2016, 9(3): 176-185. [24] 邵敏华, 李田野, 孙立军. 常规公交乘客对车内拥挤感知阻抗调查与建模[J]. 同济大学学报(自然科学版), 2012, 40(7): 1031-1034. doi: 10.3969/j.issn.0253-374x.2012.07.012SHAO Minhua, LI Tianye, SUN Lijun. Survey method and model of passengers'cost perception of crowding level in bus[J]. Journal of Tongji University(Natural Science), 2012, 40(7): 1031-1034. (in Chinese). doi: 10.3969/j.issn.0253-374x.2012.07.012