Path Planning for Intelligent Vehicle Based on Scene Modeling from LiDAR
-
摘要: 针对智能车路径规划问题,研究了基于激光雷达(LiDAR)数据的智能车驾驶场景建模方法,采集待建模场景的三维激光雷达点云数据,通过点云分割处理,去除车辆行驶道路上的点云,然后将三维点云进行俯视投影,实现二维栅格地图建模;从搜索邻域和搜索方向2个方面对传统A*算法进行改进:根据当前节点附近障碍物的分布情况,自适应地选择4邻域或8邻域搜索策略,在此基础上研究了一种自适应搜索方向A*算法,所提出的算法将搜索方向缩小至3个,根据路径规划终点相对起点的方向,确定算法的搜索方向.仿真实验表明,相较于传统A*算法(4邻域搜索),所提出的算法在规划的路径长度方面降低了约15.5%,在计算时间上降低约38.2%;对比传统A*算法(8邻域搜索),所提出的算法在计算时间上降低约47.2%,在规划路径长度和计算时间上,所提出的算法明显优于传统算法.
点击查看大图
计量
- 文章访问数: 610
- HTML全文浏览量: 85
- PDF下载量: 5
- 被引次数: 0